【BZOJ】3505: [Cqoi2014]数三角形
题意
\(n * m(1 \le n, m \le 1000)\)的网格,求顶点在格点上三角形的个数。
分析
假设\(n \le m\)
\(ans = \binom{(n+1) * (m+1)}{3} - L\),其中\(L\)表示三点共线的方案数。
所以
$$
\begin{align}
L
& = \frac{1}{2} \sum_{dx=0}^{n} \sum_{dy=0}^{m} \sum_{fx=0}^{n} \sum_{fy=0}^{m} (gcd(|dx-fx|, |dy-fy|)-1) \\
& = 2 \sum_{x=0}^{n} \sum_{y=0}^{m} \sum_{i=1}^{x} \sum_{j=1}^{y} (gcd(i, j)-1) + (m+1) \binom{n+1}{3} + (n+1) \binom{m+1}{3} \\
& = 2 f(n, m) + (m+1) \binom{n+1}{3} + (n+1) \binom{m+1}{3} \\
\\
f(n, m)
& = \sum_{x=0}^{n} \sum_{y=0}^{m} \sum_{i=0}^{x} \sum_{j=0}^{y} (gcd(i, j)-1) \\
& = \sum_{x=0}^{n} \sum_{y=0}^{m} \left( \sum_{i=0}^{x} \sum_{j=0}^{y} gcd(i, j) - x * y \right) \\
& = \sum_{x=0}^{n} \sum_{y=0}^{m} (g(x, y) - x * y) \\
\\
g(n, m)
& = \sum_{i=0}^{n} \sum_{j=0}^{m} gcd(i, j) \\
& = g(n, m-1) + \sum_{i=0}^{n} gcd(i, m) \\
& = g(n, m-1) + h(n, m) \\
\\
h(n, m)
& = \sum_{i=0}^{n} gcd(i, m) \\
& = h(n-1, m) + gcd(n, m) \\
\end{align}
$$
用这个$O(n^2 log n)$的是可以过的,所以就不用推下去了。
题解
分析已经推出一个\(O(n^2 log n)\)的做法,更优做法请自己推~
#include <bits/stdc++.h>
using namespace std;
const int N=1005;
typedef long long ll;
int gcd(int a, int b) {
return b?gcd(b, a%b):a;
}
int n, m;
ll G[N][N], f[N][N];
int main() {
scanf("%d%d", &n, &m);
ll ans=0, t=(n+1)*(m+1);
ans=(t*(t-1)*(t-2)-(ll)(n+1)*n*(n-1)*(m+1)-(ll)(m+1)*m*(m-1)*(n+1))/6;
for(int i=1; i<=n; ++i) {
for(int j=1; j<=m; ++j) {
f[i][j]=f[i-1][j]+gcd(i, j);
G[i][j]=G[i][j-1]+f[i][j];
}
}
t=0;
for(int x=0; x<=n; ++x) {
for(int y=0; y<=m; ++y) {
t+=G[x][y]-x*y;
}
}
printf("%lld\n", ans-t*2);
return 0;
}
【BZOJ】3505: [Cqoi2014]数三角形的更多相关文章
- BZOJ 3505: [Cqoi2014]数三角形 数学
3505: [Cqoi2014]数三角形 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...
- Bzoj 3505: [Cqoi2014]数三角形 数论
3505: [Cqoi2014]数三角形 Time Limits: 1000 ms Memory Limits: 524288 KB Detailed Limits Description
- bzoj 3505: [Cqoi2014]数三角形 组合数学
3505: [Cqoi2014]数三角形 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 478 Solved: 293[Submit][Status ...
- BZOJ 3505: [Cqoi2014]数三角形( 组合数 )
先n++, m++ 显然答案就是C(3, n*m) - m*C(3, n) - n*C(3, m) - cnt. 表示在全部点中选出3个的方案减去不合法的, 同一行/列的不合法方案很好求, 对角线的不 ...
- BZOJ 3505: [Cqoi2014]数三角形 [组合计数]
3505: [Cqoi2014]数三角形 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个. 注意三角形的三点不能共线. 1<=m,n<=1000 $n++ m++$ $ans ...
- BZOJ 3505 [Cqoi2014]数三角形
3505: [Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形.注意三角形的三点不能共线. Input ...
- bzoj 3505 [Cqoi2014]数三角形(组合计数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3505 [题意] 在n个格子中任选3点构成三角形的方案数. [思路] 任选3点-3点共线 ...
- BZOJ 3505 [Cqoi2014]数三角形(组合数学)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3505 [题目大意] 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个. 注 ...
- bzoj 3505 [Cqoi2014]数三角形——排列组合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3505 好题!一定要经常回顾! 那个 一条斜线上的点的个数是其两端点横坐标之差和纵坐标之差的g ...
- bzoj 3505 [Cqoi2014]数三角形 组合
ans=所有的三点排列-共行的-共列的-斜着一条线的 斜着的枚举每个点和原点的gcd,反过来也可以,还能左右,上下挪 #include<cstdio> #include<cstrin ...
随机推荐
- 让Web页面中的编辑器支持黏贴或直接拖拽来添加图片
基本原理是将剪贴板中的图片二进制数据转为Base64编码 代码: <html> <head> </head> <body> <script src ...
- MySQL 5.6 新参数对binlog日志量的优化
数据库版本:5.6.* 1.row日志image类型 参数binlog_row_image 控制着这种image类型,默认为FULL(log all columns),即记录before&af ...
- MySQL检查重复索引工具-pt-duplicate-key-checker
在MySQL中是允许在同一个列上创建多个索引的,示例如下: mysql --socket=/tmp/mysql5173.sock -uroot -p mysql> SELECT VERSION( ...
- spring-quartz.xml
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns:xsi="http://ww ...
- Response.End()出现ThreadAbortException 异常
A. 如果使用 Response.End.Response.Redirect 或 Server.Transfer 方法,将出现 ThreadAbortException 异常.异常内容:由于代码已经过 ...
- PHP同时上传“多个”文件示例,并格式化$_FILES数组信息
方法1: 在html表单,放置多个文件选择框, 使用数组名作为组件的名字,如下: <form action="upload.php" method="post&qu ...
- 1·3 对 git 的认识
我可以诚实的说:这是我第一次听见这个名词 GIT.老师您发的关于git链接我下载了,只是还没看完.所以以下只是片面的理解,在后期我会单独再发一次. 一·GIT的简单介绍 1·Git是一款免费.开源的分 ...
- css3径向渐变详解-遁地龙卷风
(-1)写在前面 我用的是chrome49,如果你用的不是.可以尝试换下浏览器前缀.IE在这方面的实现又特例独行了.不想提及-,这篇是为后续做准备. (0)快速使用 background-image: ...
- ssh框架整合-NoClassDefFoundError-NoSuchMethodError-遁地龙卷风
(-1)写在前面 spring2.0.struts1.2.hibernate3.0.myeclipse8.5.tomcat6.0,整合之中出现了很多问题,前几天忙着整理毕业论文的资料,时间腾出来了,总 ...
- Vue in 2016
原文链接:Vue in 2016 Vue 作者尤雨溪对 Vue 在 2016 年的总结以及未来的展望 现在已经是2016的尾声了!在这过去的12个月里,Vue的持续增长速度已经超过了我的预期--这个项 ...