time limit per test

10 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Professor GukiZ was playing with arrays again and accidentally discovered new function, which he called GukiZiana. For given array a, indexed with integers from 1 to n, and number yGukiZiana(a, y) represents maximum value of j - i, such that aj = ai = y. If there is no y as an element in a, then GukiZiana(a, y) is equal to  - 1. GukiZ also prepared a problem for you. This time, you have two types of queries:

  1. First type has form 1 l r x and asks you to increase values of all ai such that l ≤ i ≤ r by the non-negative integer x.
  2. Second type has form 2 y and asks you to find value of GukiZiana(a, y).

For each query of type 2, print the answer and make GukiZ happy!

Input

The first line contains two integers nq (1 ≤ n ≤ 5 * 105, 1 ≤ q ≤ 5 * 104), size of array a, and the number of queries.

The second line contains n integers a1, a2, ... an (1 ≤ ai ≤ 109), forming an array a.

Each of next q lines contain either four or two numbers, as described in statement:

If line starts with 1, then the query looks like 1 l r x (1 ≤ l ≤ r ≤ n, 0 ≤ x ≤ 109), first type query.

If line starts with 2, then th query looks like 2 y (1 ≤ y ≤ 109), second type query.

Output

For each query of type 2, print the value of GukiZiana(a, y), for y value for that query.

Examples
input
4 3
1 2 3 4
1 1 2 1
1 1 1 1
2 3
output
2
input
2 3
1 2
1 2 2 1
2 3
2 4
output
0
-1 题意:给你一个n个数的序列,以及q个操作,有两种操作,1是区间[l,r]上的每个数加上v 2是查询y,求aj = ai = y的最大j-i
思路:我想到分块的做法,分为tb块,每一块中的每个元素保存v和id,然后每一块按v排序,相等按id排序,这样对于查询的时候,我们只需要从左到右找到第一块满足存在y,那么pl = lowwer_bound(y)。同理从右到左找到第一块满足存在y,那么pr = upper_bound(y)。 答案就是pr-pl。
对于更新操作,区间[l,r]所覆盖的块中,第一块和最后一块暴力更新,并且重建块,即重新排序。而对于中间的完整覆盖的块,我们只记录增量add[b],因为add[b]表示b整块的增量,那么b快依然有序,在b块查询x的时候,x -= add[b]即可。 做法很快想好了,但wa了好多发,就是以为不会爆ll。。。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 5e5 + ;
const int SIZE = ;
struct Block {
ll v; int id;
Block() {}
Block(ll v, int id) : v(v), id(id) {}
friend bool operator < (Block a, Block b) {
if(a.v == b.v) return a.id < b.id;
return a.v < b.v;
};
};
Block block[N/SIZE + ][SIZE + ];
int n, q;
ll A[N];
ll add[N/SIZE + ];
int tb, ls; void init() {
scanf("%d%d", &n, &q);
int b = , j = ;
for(int i = ; i < n; ++i) {
scanf("%I64d", &A[i]);
block[b][j] = Block(A[i], i);
if(++j == SIZE) { b++; j = ;}
}
ls = ;
for(int i = ; i < b; ++i) sort(block[i], block[i] + SIZE);
if(j) { ls = j; sort(block[b], block[b] + j); }
tb = b;
}
void rebuild(int b, int sz) {
int j = ;
for(int i = b * SIZE; i < b * SIZE + sz; ++i) block[b][j++] = Block(A[i], i);
sort(block[b], block[b] + j);
}
void update(int L, int R, int v) {
int lb = L / SIZE, rb = R / SIZE, j, sz;
if(lb == rb) {
for(int i = L; i <= R; ++i) A[i] += v;
if(lb == tb) sz = ls;
else sz = SIZE;
rebuild(lb, sz);
}else {
for(int i = L; i < (lb + ) * SIZE; ++i) A[i] += v;
rebuild(lb, SIZE); for(int i = rb * SIZE; i <= R; ++i) A[i] += v;
if(rb == tb) sz = ls;
else sz = SIZE;
rebuild(rb, sz);
for(int b = lb + ; b < rb; ++b) add[b] += v;
}
}
int upper(Block a[], int sz, ll v) {
int L = , R = sz;
while(R - L > ) {
int M = (L + R) >> ;
if(a[M].v <= v) L = M;
else R = M;
}
return L;
}
int lower(Block a[], int sz, ll v) {
int L = , R = sz;
while(L < R) {
int M = (L + R) >> ;
if(a[M].v >= v) R = M;
else L = M + ;
}
return L;
}
int query(ll x) {
int pl = -, pr = -;
ll v;
if(tb == ) {
for(int i = ; i < ls; ++i) if(A[i] == x) { pl = i; break; }
for(int i = ls - ; i >= ; --i) if(A[i] == x) { pr = i; break; }
if(pl == -) return -;
}else {
if(ls) for(int i = tb * SIZE + ls - ; i >= tb * SIZE; --i) if(A[i] == x) { pr = i; break; }
if(pr == -) {
for(int b = tb - ; b >= ; --b) {
v = x - add[b];
int px = upper(block[b], SIZE, v);
if(px < SIZE && block[b][px].v == v) { pr = block[b][px].id; break; }
}
}
if(pr == -) return -;
for(int b = ; b < tb; ++b) {
v = x - add[b];
int pi = lower(block[b], SIZE, v);
if(pi < SIZE && block[b][pi].v == v) { pl = block[b][pi].id; break; }
}
if(pl == -) {
for(int i = tb * SIZE; i < tb * SIZE + ls; ++i) if(A[i] == x) { pl = i; break; }
}
}
return pr - pl;
}
int main() {
//freopen("in.txt", "r", stdin);
init();
int op, l, r, x;
memset(add, , sizeof add);
for(int i = ; i < q; ++i) {
scanf("%d", &op);
if(op == ) {
scanf("%d%d%d", &l, &r, &x);
l--; r--;
update(l, r, x);
}else {
scanf("%d", &x);
printf("%d\n", query(x));
}
}
return ;
}

Codeforces 307 div2 E.GukiZ and GukiZiana 分块的更多相关文章

  1. Codeforces Round #307 (Div. 2) E. GukiZ and GukiZiana 分块

    E. GukiZ and GukiZiana Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/55 ...

  2. Codeforces 551E - GukiZ and GukiZiana(分块)

    Problem E. GukiZ and GukiZiana Solution: 先分成N=sqrt(n)块,然后对这N块进行排序. 利用二分查找确定最前面和最后面的位置. #include < ...

  3. CF 551E. GukiZ and GukiZiana [分块 二分]

    GukiZ and GukiZiana 题意: 区间加 给出$y$查询$a_i=a_j=y$的$j-i$最大值 一开始以为和论文CC题一样...然后发现他带修改并且是给定了值 这样就更简单了.... ...

  4. Codeforces Round #307 (Div. 2) E. GukiZ and GukiZiana(分块)

    E. GukiZ and GukiZiana time limit per test 10 seconds memory limit per test 256 megabytes input stan ...

  5. Codeforces 551E GukiZ and GukiZiana(分块思想)

    题目链接 GukiZ and GukiZiana 题目大意:一个数列,支持两个操作.一种是对区间$[l, r]$中的数全部加上$k$,另一种是查询数列中值为$x$的下标的最大值减最小值. $n < ...

  6. CodeForces 551E GukiZ and GukiZiana

    GukiZ and GukiZiana Time Limit: 10000ms Memory Limit: 262144KB This problem will be judged on CodeFo ...

  7. Codeforces 551 E - GukiZ and GukiZiana

    E - GukiZ and GukiZiana 思路:分块, 块内二分 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC ...

  8. [codeforces551E]GukiZ and GukiZiana

    [codeforces551E]GukiZ and GukiZiana 试题描述 Professor GukiZ was playing with arrays again and accidenta ...

  9. Codeforces #180 div2 C Parity Game

    // Codeforces #180 div2 C Parity Game // // 这个问题的意思被摄物体没有解释 // // 这个主题是如此的狠一点(对我来说,),不多说了这 // // 解决问 ...

随机推荐

  1. K米点歌APP评测

    K米APP评测 产品简介 K米点歌是一款免费的社交K歌手机应用,其手机点歌功能主要在KTV.夜总会,酒吧等K歌场所中使用,当前提供iPhone版本及安卓版本下载使用.——百度百科 评测版本 K米点歌4 ...

  2. 浅谈CSRF攻击方式

    一.CSRF是什么? CSRF(Cross-site request forgery),中文名称:跨站请求伪造,也被称为:one click attack/session riding,缩写为:CSR ...

  3. <<< web里面Servlet高级应用的基础介绍

    Servlet中的页面跳转?两种方式,实现跳转:内部跳转(请求转发).外部跳转(重定向)内部跳转(请求转发)特点:在服务器内部完成页面之间的跳转:请求只有一次:浏览器地址不会改变.request.ge ...

  4. java支持跨平台获取cpuid、主板id、硬盘id、mac地址 (兼容windows、Linux)

    windows: package cn.net.comsys.helper.system.info;   import java.io.BufferedReader; import java.io.F ...

  5. php提供更快的文件下载

    在微博上偶然看到一篇介绍php更快下载文件的方法,其实就是利用web服务器的xsendfile特性,鸟哥的博客中只说了apache的实现方式,我找到了介绍nginx实现方式的文章,整理一下! let' ...

  6. ActiveMQ的静态网络链接

    -------------------------------------------------------------------- (1)ActiveMQ的networkConnector是什么 ...

  7. vs2015安装体验

    后边出现这样的问题该怎么解决?

  8. touch移动触屏滑动事件

    移动端触屏滑动的效果其实就是图片轮播,在PC的页面上很好实现,绑定click和mouseover等事件来完成.但是在移动设备上,要实现这种轮播的效果,就需要用到核心的touch事件.处理touch事件 ...

  9. render()方法是render_to_response

    自django1.3开始:render()方法是render_to_response的一个崭新的快捷方式, 前者会自动使用 RequestContext.而后者必须coding 出来,这是最明显的区别 ...

  10. 批量导出oracle中的对象

    背景 Oracle数据库中有table,view,procedure,function,package,type等对象,需要将这些对象导出到不同的文件中.常用的方法有3种:1. 通过开发工具直接导出. ...