原文:http://www.felix021.com/blog/read.php?2040

首先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一个特殊的符号。比如 abba 变成 #a#b#b#a#, aba变成 #a#b#a#。 为了进一步减少编码的复杂度,可以在字符串的开始加入另一个特殊字符,这样就不用特殊处理越界问题,比如 @#a#b#a#(注意,下面的代码是用C语言写 就,由于C语言规范还要求字符串末尾有一个'\0'所以正好OK,但其他语言可能会导致越界)。

下面以字符串12212321为例,经过上一步,变成了 S[] = "@#1#2#2#1#2#3#2#1#";

然后用一个数组 P[i] 来记录以字符S[i]为中心的最长回文子串向左/右扩张的长度(包括S[i],也就是把该回文串“对折”以后的长度),比如S和P的对应关系:

S  #    #    #    #    #    #    #    #    #
P
(p.s. 可以看出,P[i]-1正好是原字符串中回文串的总长度)

那么怎么计算P[i]呢?该算法增加两个辅助变量(其实一个就够了,两个更清晰)id和mx,其中id表示最大回文子串中心的位置,mx则为id+P[id],也就是最大回文子串的边界。

然后可以得到一个非常神奇的结论,这个算法的关键点就在这里了:如果mx > i,那么P[i] >= MIN(P[2 * id - i], mx - i)。就是这个串卡了我非常久。实际上如果把它写得复杂一点,理解起来会简单很多:

//记j = 2 * id - i,也就是说 j 是 i 关于 id 的对称点。
if (mx - i > P[j])
P[i] = P[j];
else /* P[j] >= mx - i */
P[i] = mx - i; // P[i] >= mx - i,取最小值,之后再匹配更新。

当然光看代码还是不够清晰,还是借助图来理解比较容易。

当 mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j],见下图。


P[j] >= mx - i
的时候,以S[j]为中心的回文子串不一定完全包含于以S[id]为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是
说以S[i]为中心的回文子串,其向右至少会扩张到mx的位置,也就是说 P[i] >= mx -
i。至于mx之后的部分是否对称,就只能老老实实去匹配了。

对于 mx <= i 的情况,无法对 P[i]做更多的假设,只能P[i] = 1,然后再去匹配了。

于是代码如下:

//输入,并处理得到字符串s
int p[], mx = , id = ;
memset(p, , sizeof(p));
for (i = ; s[i] != '\0'; i++) {
p[i] = mx > i ? min(p[*id-i], mx-i) : ;
while (s[i + p[i]] == s[i - p[i]]) p[i]++;
if (i + p[i] > mx) {
mx = i + p[i];
id = i;
}
}
//找出p[i]中最大的

manacher求最长回文子串算法的更多相关文章

  1. Manacher 求最长回文子串算法

    Manacher算法,是由一个叫Manacher的人在1975年发明的,可以在$O(n)$的时间复杂度里求出一个字符串中的最长回文子串. 例如这两个回文串“level”.“noon”,Manacher ...

  2. manacher求最长回文子串算法模板

    #include <iostream> #include <cstring> #include <cstdlib> #include <stdio.h> ...

  3. hdu 3068 最长回文 【Manacher求最长回文子串,模板题】

    欢迎关注__Xiong的博客: http://blog.csdn.net/acmore_xiong?viewmode=list 最长回文                                 ...

  4. Manacher模板( 线性求最长回文子串 )

    模板 #include<stdio.h> #include<string.h> #include<algorithm> #include<map> us ...

  5. PAT甲题题解-1040. Longest Symmetric String (25)-求最长回文子串

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789177.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  6. hdu 3068 最长回文(manachar求最长回文子串)

    题目连接:hdu 3068 最长回文 解题思路:通过manachar算法求最长回文子串,如果用遍历的话绝对超时. #include <stdio.h> #include <strin ...

  7. Manacher算法——求最长回文子串

    首先,得先了解什么是回文串.回文串就是正反读起来就是一样的,如“abcdcba”.我们要是直接采用暴力方法来查找最长回文子串,时间复杂度为O(n^3),好一点的方法是枚举每一个字符,比较较它左右距离相 ...

  8. manacher算法求最长回文子串

    一:背景 给定一个字符串,求出其最长回文子串.例如: s="abcd",最长回文长度为 1: s="ababa",最长回文长度为 5: s="abcc ...

  9. Manacher算法(马拉车)求最长回文子串

    Manacher算法求最长回文字串 算法思路 按照惯例((・◇・)?),这里只是对算法的一些大体思路做一个描述,因为找到了相当好理解的博客可以参考(算法细节见参考文章). 一般而言,我们的判断回文算法 ...

随机推荐

  1. 大数据学习——实现多agent的串联,收集数据到HDFS中

    采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs,使用agent串联 根据需求,首先定义以下3大要素 第一台flume agent l  ...

  2. HDU 5469 Antonidas

    Antonidas Time Limit: 4000ms Memory Limit: 65536KB This problem will be judged on HDU. Original ID:  ...

  3. python023 Python3 标准库概览

    Python3 标准库概览 操作系统接口 os模块提供了不少与操作系统相关联的函数. >>> import os >>> os.getcwd() # 返回当前的工作 ...

  4. Linux Notes:Linux下的远程登录协议及软件

    常见的远程登录协议 1.RDP(remote desktopp protocol)协议,windows远程桌面协议 2.telnet CLI 界面下远程管理,几乎所有的操作系统都有,数据明文传输,不安 ...

  5. 【bzoj1042】[HAOI2008]硬币购物-递推与动规-容斥原理

    硬币购物 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2 ...

  6. middle(bzoj 2653)

    Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序列s. 回答Q个这样的询问:s的左端点在[a,b ...

  7. 最长回文(hdu 3068)

    Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.回文就是正反读都是一样的字符串,如aba, abba等 Input 输入有 ...

  8. 【ZJOI2017 Round1练习】D2T2 iqtest(排列组合)

    题意: 思路: 根据欧拉定理,a^(phi(n)-1)为a mod n的逆元 ..]of longint; s,ans,x,mo,k,phi,tmp:int64; i,m,n,j:longint; f ...

  9. csu - 1659 Graph Center(最短路)

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1659 题意是找一个图的中心,图的中心定义是某一个点到其他点的最大距离最小,如果有多个排序输出. 注 ...

  10. Codeforces 549C(博弈)

    C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...