【题解】

  1,先说说莫队算法。

    莫队算法是用来离线处理区间问题的算法。非常易于理解和使用,且运用十分广泛。

    假设我们现在已知区间[L,R]的答案,如果我们能以较低的时间复杂度扩展得到区间$[L-1,R],[L+1,R],[L,R-1],[L,R+1]$的答案,我们就可以使用莫队算法。通常可以接受的扩展的时间复杂度为$O(1)$或者$O(logN)$.

    那么莫队算法具体是怎样的呢?首先我们把询问按照区间左端点分成$\sqrt{n}$块,同一块内按照区间右端点进行排序。当我们按调整后的顺序处理询问时,如果左端点比询问区间的左端点小,那就把左端点右移,如果左端点比询问区间的右端点大,那就把左端点左移;右端点也同理。然后再把处理好的询问按原来的顺序储存。

    为什么这样做可以保证时间复杂度?假设扩展的时间复杂度为$f(n)$,区间长为$n$,询问次数为$m$。显然,对于每次询问,左端点最多移动$\sqrt{n}$次,那么移动左端点的总时间复杂度就是$O(f(n)*\sqrt{n}*m)$;右端点移动次数与询问次数无关,即在同一个块内,右端点最多移动n次,那么移动右端点的时间复杂度就是$O(f(n)*\sqrt{n}*n)$.  $m$和$n$同阶,那么莫队算法的时间复杂度就是$O(f(n)*\sqrt{n}*n)$.

    还有一个常数优化,就是当块的编号为奇数时,把询问按照区间右端点从小到大排序;当块的编号为偶数时,把询问按照区间右端点从大到小排序。这样可以减少右端点移动的次数。实测可以有效提高效率。

  2,本题是莫队算法的基础题。假设共有n只袜子,每种颜色的袜子的数量是cnt[i],选中同色袜子的概率是$Sigma(0.5*cnt[i]*(cnt[i]-1))/(0.5*n*(n-1))$.

BZOJ 2038 2009国家集训队 小Z的袜子【模板·莫队】的更多相关文章

  1. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  2. Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 5763  Solved: 2660[Subm ...

  3. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )

    莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...

  4. BZOJ 2038: [2009国家集训队]小Z的袜子 (莫队)

    题目传送门:小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… ...

  5. bzoj 2038: [2009国家集训队]小Z的袜子(hose) (莫队)

    Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...

  6. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)&&莫对算法

    这里跟曼哈顿最小生成树没有太大的关系. 时间复杂度证明: [BZOJ2038 小Z的袜子 AC代码] 排序方式: 第一关键字:l所在的块: 第二关键字:r从小到大. #include<cstdi ...

  7. BZOJ 2038: [2009国家集训队]小Z的袜子

    二次联通门 : BZOJ 2038: [2009国家集训队]小Z的袜子 /* BZOJ 2038: [2009国家集训队]小Z的袜子 莫队经典题 但是我并不认为此题适合入门.. Answer = ∑ ...

  8. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7676  Solved: 3509[Subm ...

  9. BZOJ 2038 [2009国家集训队]小Z的袜子 莫队

    2038: [2009国家集训队]小Z的袜子(hose) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Descriptionw ...

  10. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) 分块

    分块大法好 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MB Submit: 2938  Solved: 13 ...

随机推荐

  1. ubuntu系统jdk安装及环境变量配置

    一.安装jdk 1.下载linux版本jdk,我用的是最新版本1.8.0_102 2.打开终端,进入jdk的存放路径 3.解压.tar.gz文件 sudo tar zxvf jdk-8u102-lin ...

  2. 【Poj3241】Object Clustering

    Position: http://poj.org/problem?id=3241 List Poj3241 Object Clustering List Description Knowledge S ...

  3. PCB ODB++(Gerber)图形绘制实现方法

    这里讲解一下用net解析PCB图形绘制实现方法 一.解析PCB图形绘制实现 解析PCB图形,说简单也非常简单,先说一下,PCB Gerber图形由:点,线,弧,铜皮,文字 5类元素组成,通常简写为:P ...

  4. E20171005-ts

    collapse  n. 垮台; (身体的) 衰弱;              vt. 使倒塌; 使坍塌; 使瓦解;               vi. 崩溃; 倒塌; 折叠; (尤指工作劳累后) 坐 ...

  5. Gold Coins

    http://poj.org/problem?id=2000 #include<stdio.h> ; int main() { int coin[N]; ,j,k; j = ; k = ; ...

  6. hash练习们

    610. 数对的个数 ★★   输入文件:dec.in   输出文件:dec.out   简单对比时间限制:1 s   内存限制:128 MB Description出题是一件痛苦的事情!题目看多了也 ...

  7. [App Store Connect帮助]三、管理 App 和版本(4)创建新版本

    当您准备分发 App 的新版本时,您创建的新版本使用您为原始版本创建的 App 记录.该新版本将对购买过先前版本的顾客免费可用. 各版本使用的 Apple ID(App 标识符).SKU 和套装 ID ...

  8. JAVA小记(一)

    java中向上转型.向下转型.内部类中所需注意的问题: 向上转型与向下转型: 举个例子:有2个类,Father是父类,Son类继承自Father. Father f1 = new Son();   / ...

  9. 诡异之--map clear 之后可能导致size != 0的操作

    map<char, int>mp; charMp[; charMp['b'] ++; cout<<charMp['a']<<endl; cout<<ch ...

  10. InnoDB锁机制之Gap Lock、Next-Key Lock、Record Lock解析

    InnoDB锁机制之Gap Lock.Next-Key Lock.Record Lock解析 有意思,解释的很好