BZOJ 2038 2009国家集训队 小Z的袜子【模板·莫队】
【题解】
1,先说说莫队算法。
莫队算法是用来离线处理区间问题的算法。非常易于理解和使用,且运用十分广泛。
假设我们现在已知区间[L,R]的答案,如果我们能以较低的时间复杂度扩展得到区间$[L-1,R],[L+1,R],[L,R-1],[L,R+1]$的答案,我们就可以使用莫队算法。通常可以接受的扩展的时间复杂度为$O(1)$或者$O(logN)$.
那么莫队算法具体是怎样的呢?首先我们把询问按照区间左端点分成$\sqrt{n}$块,同一块内按照区间右端点进行排序。当我们按调整后的顺序处理询问时,如果左端点比询问区间的左端点小,那就把左端点右移,如果左端点比询问区间的右端点大,那就把左端点左移;右端点也同理。然后再把处理好的询问按原来的顺序储存。
为什么这样做可以保证时间复杂度?假设扩展的时间复杂度为$f(n)$,区间长为$n$,询问次数为$m$。显然,对于每次询问,左端点最多移动$\sqrt{n}$次,那么移动左端点的总时间复杂度就是$O(f(n)*\sqrt{n}*m)$;右端点移动次数与询问次数无关,即在同一个块内,右端点最多移动n次,那么移动右端点的时间复杂度就是$O(f(n)*\sqrt{n}*n)$. $m$和$n$同阶,那么莫队算法的时间复杂度就是$O(f(n)*\sqrt{n}*n)$.
还有一个常数优化,就是当块的编号为奇数时,把询问按照区间右端点从小到大排序;当块的编号为偶数时,把询问按照区间右端点从大到小排序。这样可以减少右端点移动的次数。实测可以有效提高效率。
2,本题是莫队算法的基础题。假设共有n只袜子,每种颜色的袜子的数量是cnt[i],选中同色袜子的概率是$Sigma(0.5*cnt[i]*(cnt[i]-1))/(0.5*n*(n-1))$.
BZOJ 2038 2009国家集训队 小Z的袜子【模板·莫队】的更多相关文章
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7687 Solved: 3516[Subm ...
- Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 5763 Solved: 2660[Subm ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )
莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...
- BZOJ 2038: [2009国家集训队]小Z的袜子 (莫队)
题目传送门:小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… ...
- bzoj 2038: [2009国家集训队]小Z的袜子(hose) (莫队)
Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose)&&莫对算法
这里跟曼哈顿最小生成树没有太大的关系. 时间复杂度证明: [BZOJ2038 小Z的袜子 AC代码] 排序方式: 第一关键字:l所在的块: 第二关键字:r从小到大. #include<cstdi ...
- BZOJ 2038: [2009国家集训队]小Z的袜子
二次联通门 : BZOJ 2038: [2009国家集训队]小Z的袜子 /* BZOJ 2038: [2009国家集训队]小Z的袜子 莫队经典题 但是我并不认为此题适合入门.. Answer = ∑ ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose)
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7676 Solved: 3509[Subm ...
- BZOJ 2038 [2009国家集训队]小Z的袜子 莫队
2038: [2009国家集训队]小Z的袜子(hose) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Descriptionw ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) 分块
分块大法好 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MB Submit: 2938 Solved: 13 ...
随机推荐
- Codeforces Round #271 (Div. 2) D.Flowers DP
D. Flowers We saw the little game Marmot made for Mole's lunch. Now it's Marmot's dinner time and, ...
- python pass 的用法
python pass用法 1.空语句 do nothing 2.保证格式完整 3.保证语义完整 4.以if语句为例: C/C++中写法: if(true) ; // do nothing else ...
- jqgrid formatter
日期 formatter:"date",formatoptions: {srcformat:'Y-m-d H:i:s',newformat:'Y-m-d'} value {name ...
- 客户端JavaScript Ajax
创建: 2017/10/21 完成: 2017/10/23 [TODO] 对Ajax收发各类型数据制作模板 补充跨域通信(cross origin) p457 HTTP通信 HTTP 超文本 ...
- codevs3304水果姐逛街(线段数)
3304 水果姐逛水果街Ⅰ 时间限制: 2 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 水果姐今天心情不错,来到了水果街. 水果 ...
- [Swift通天遁地]五、高级扩展-(10)整形、浮点、数组、字典、字符串、点、颜色、图像类的实用扩展
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- 微信小程序的wxml文件和wxss文件在webstrom的支持
webstrom默认不支持wxml文件和wxss文件,所以要进入设置里面手动添加支持. 对wxml文件的支持: 文件 -> 设置 -> 编辑器 -> 文件类型, 然后选择XML文件, ...
- 【题解】动态逆序对 [CQOI2011] [P3157] [BZOJ3295] [P1393]
[题解]动态逆序对 [CQOI2011] [P3157] [BZOJ3295] [P1393] 水一水QAQ 题目链接: \([P3157]\) \([BZOJ3295]\) [题目描述] 对于一个序 ...
- $CF1141C Polycarp Restores Permutation$
\(problem\) 这题的大致意思就是已知数值差值 求1-n的排列 如果能构成排列 则输出这个排列.如果不能则输出-1 排列的值都是 大于1 而小于n的 而且没有相同的数字. 这题最关键的是 怎么 ...
- pip使用豆瓣镜像源
pip使用豆瓣的镜像源 豆瓣镜像地址: https://pypi.douban.com/simple/ 虽然用easy_install和pip来安装第三方库很方便 他们的原理其实就是从Python的官 ...