题目描述

佳佳碰到了一个难题,请你来帮忙解决。

对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数),x,k是给定的数。我们要求的是这个不定方程的正整数解组数。

举例来说,当k=3,x=2时,分别为(a1,a2,a3)=(2,1,1)'(1,2,1),(1,1,2)。

输入输出格式

输入格式:

输入文件equation.in有且只有一行,为用空格隔开的两个正整数,依次为k,x。

输出格式:

输出文件equation.out有且只有一行,为方程的正整数解组数。

输入输出样例

输入样例#1:

  1. 3 2
输出样例#1:

  1. 3

说明

对于40%的数据,ans≤10^16;对于100%的数据,k≤100,x≤2^31-1,k≤g(x)。

_NOI导刊2010提高(01)

分析:考虑dp,设f[i][j]表示选了i个数,和为j的正整数解组数.很显然f[i][j]=∑f[i-1][j-kk],kk是i能够取到的数,答案是f[x^x % 1000][k].复杂度是三次方级别的,看有没有方方法来优化一下.单纯从dp上来看似乎是只能优化空间了,如果有公式就好了,类似青蛙过河一样。

其实问题可以变成我们要走k步,每一步走的距离任意,走的总距离要为x,求方案数,因为每一步走的距离任意,实际上我们只要把这k步分配到x中就好了.把x抽象成x个点,画在图上,就能发现走k步实际上是在x-1个间隔中找k-1个间隔,那么答案就是C(x-1,k-1).

因为k,x很大,所以要用到高精度,我用结构体写高精度总是出现奇怪的错误,以后还是用数组了.

  1. #include <cstdio>
  2. #include <cstring>
  3. #include <iostream>
  4. #include <algorithm>
  5.  
  6. using namespace std;
  7.  
  8. long long k,x;
  9. int f[][][];
  10.  
  11. long long qpow(long long a,long long b,int mod)
  12. {
  13. long long ans = ;
  14. while (b)
  15. {
  16. if (b & )
  17. ans = (ans * a) % mod;
  18. a = (a * a) % mod;
  19. b >>= ;
  20. }
  21. return ans;
  22. }
  23.  
  24. void add(int x,int y,int x1,int y1,int x2,int y2)
  25. {
  26. for (int i = ; i <= max(f[x1][y1][],f[x2][y2][]); i++)
  27. {
  28. f[x][y][i] += f[x1][y1][i] + f[x2][y2][i];
  29. f[x][y][i + ] = f[x][y][i] / ;
  30. f[x][y][i] %= ;
  31. }
  32. f[x][y][] = max(f[x1][y1][],f[x2][y2][]);
  33. if (f[x][y][f[x][y][] + ])
  34. f[x][y][]++;
  35. }
  36.  
  37. int main()
  38. {
  39. scanf("%lld%lld",&k,&x);
  40. x = qpow(x,x,);
  41.  
  42. for (int i = ; i < x; i++)
  43. f[i][][] = f[i][][] = ;
  44.  
  45. for (int i = ; i < x; i++)
  46. for (int j = ; j < k; j++)
  47. add(i,j,i-,j,i-,j-);
  48.  
  49. for (int i = f[x-][k-][]; i >= ; i--)
  50. printf("%d",f[x-][k-][i]);
  51. printf("\n");
  52.  
  53. return ;
  54. }

洛谷P1771 方程的解_NOI导刊2010提高(01)的更多相关文章

  1. P1771 方程的解_NOI导刊2010提高(01)

    P1771 方程的解_NOI导刊2010提高(01) 按题意用快速幂把$g(x)$求出来 发现这不就是个组合数入门题吗! $k$个人分$g(x)$个苹果,每人最少分$1$个,有几种方法? 根据插板法, ...

  2. 洛谷—— P1775 古代人的难题_NOI导刊2010提高(02)

    P1775 古代人的难题_NOI导刊2010提高(02) 题目描述 门打开了,里面果然是个很大的厅堂.但可惜厅堂内除了中央的一张羊皮纸和一支精致的石笔,周围几具骷髅外什么也没有.难道这就是王室的遗产? ...

  3. 方程的解_NOI导刊2010提高(01) 组合数

    题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...

  4. 洛谷——P1775 古代人的难题_NOI导刊2010提高(02)&& P1936 水晶灯火灵(斐波那契数列)

    P1775 古代人的难题_NOI导刊2010提高(02) P1936 水晶灯火灵 斐波那契数列 1.x,y∈[1…k],且x,y,k∈Z 2.(x^2-xy-y^2)^2=1 给你一个整数k,求一组满 ...

  5. 洛谷 P1807 最长路_NOI导刊2010提高(07) 题解

    P1807 最长路_NOI导刊2010提高(07) 题目描述 设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j.设w(i,j)为边的长度,请设计算法,计算 ...

  6. 方程的解_NOI导刊2010提高

    方程的解 给定x,求\(a_1+a_2+...+a_k=x^x\ mod\ 1000\)的正整数解解的组数,对于100%的数据,k≤100,x≤2^31-1. 解 显然x是可以快速幂得到答案的,而该问 ...

  7. 洛谷 P1807 最长路_NOI导刊2010提高(07)

    最长路 #include <iostream> #include <cstdio> #include <cstring> #include <queue> ...

  8. 洛谷 P1807 最长路_NOI导刊2010提高(07)题解

    相当与一个拓扑排序的模板题吧 蒟蒻的辛酸史 题目大意:给你一个有向无环图,让你求出1到n的最长路,如果没有路径,就输出-1 思路:一开始以为是一个很裸的拓扑排序 就不看题目,直接打了一遍拓扑排序 然后 ...

  9. 洛谷P1807 最长路_NOI导刊2010提高(07)

    //拓扑排序求最长路 #include<bits/stdc++.h> #include<queue> using namespace std; const int INF=0x ...

随机推荐

  1. JSP九大内置对象的作用和用法总结【转】

    JSP九大内置对象的作用和用法总结?     JSP中一共预先定义了9个这样的对象,分别为:request.response.session.application.out.pagecontext.c ...

  2. AJPFX关于Class类和Class类实例

    Java程序中的各个Java类属于同一类事物,描述这类事物的Java类就是Class类.对比提问:众多的人用一个什么类表示?众多的Java类用一个什么类表示?人  PersonJava类  Cla ...

  3. AJPFX关于Java内部类及其实例化

    public class Outer {    private int size;    public class Inner {        private int counter = 10;  ...

  4. JDK使用最多的模式之一--观察者模式

    公司接到新任务,需要做一个气象监测应用.该应用将实现三个界面:当前气象状态,气象统计以及气象预报.应用从WeatherObject对象中获取所需数据:温度,湿度,气压.当然,为了可扩展性,该应用同时也 ...

  5. hihocoder offer收割编程练习赛8 A 小Ho的强迫症

    思路: 乱搞. 实现: #include <iostream> #include <cstdio> using namespace std; typedef long long ...

  6. 动态栅格(DEM)图层实现服务端渲染

    PS:此处动态图层指,图层文件都放在经过注册的文件目录里,可以通过文件名动态加载图层 动态加载的矢量图层,可以实现客户端和服务端的定制渲染,但栅格一般是不能再渲染的,以下介绍可行的方法 建立一个很简单 ...

  7. java实现排序的几种方法

    package com.ywx.count; import java.util.Scanner; /** * 题目:排序的几种方式(汇总及重构) * @author Vashon(yangwenxue ...

  8. Android Studio -自定义LogCat的颜色

    博文地址 http://www.cnblogs.com/Loonger/p/6285344.html 先看看效果 (设置中的显示,下图) 步骤如下 File->Settings 或Ctrl + ...

  9. TIOJ1208 第K大连续和

    第k大的题一般都有点麻烦 pbds库的tree,需要研究一下https://codeforces.com/blog/entry/11080find_by_order() and order_of_ke ...

  10. 【整理】用JSON-server模拟REST API

    用JSON-server模拟REST API https://www.cnblogs.com/ys-wuhan/p/6387791.html