题目链接:https://vjudge.net/problem/POJ-3376

Finding Palindromes
Time Limit: 10000MS   Memory Limit: 262144K
Total Submissions: 4244   Accepted: 796
Case Time Limit: 2000MS

Description

A word is called a palindrome if we read from right to left is as same as we read from left to right. For example, "dad", "eye" and "racecar" are all palindromes, but "odd", "see" and "orange" are not palindromes.

Given n strings, you can generate n × n pairs of them and concatenate the pairs into single words. The task is to count how many of the so generated words are palindromes.

Input

The first line of input file contains the number of strings n. The following n lines describe each string:

The i+1-th line contains the length of the i-th string li, then a single space and a string of li small letters of English alphabet.

You can assume that the total length of all strings will not exceed 2,000,000. Two strings in different line may be the same.

Output

Print out only one integer, the number of palindromes.

Sample Input

3
1 a
2 ab
2 ba

Sample Output

5

Hint

The 5 palindromes are: 
aa aba aba abba baab 

Source

POJ Monthly--2007.09.09, Zhou Gelin, modified from POI06

题解:

可知:如果两字符串拼接起来能够形成回文串,那么短串的逆串是长串的前缀。

根据上述结论,我们可以:

1.利用扩展KMP算法求出每个字符串的后缀是否为回文串,以及每个字符串的逆串的后缀是否为回文串。

2.将每个字符串插入到Trie树中,并且Trie树的结点需要维护两个信息:当前结点的字符串数,以及往下有多少个回文串后缀。

3.用每个字符串的逆串去Trie树中查找。有两种情况:当前串作为长串,以及当前串作为短串。详情请看代码。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <sstream>
#include <algorithm>
using namespace std;
typedef long long LL;
const double eps = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int MAXN = 2e6+; char str[MAXN], res[MAXN];
int beg[MAXN], len[MAXN], ispal[][MAXN];
int Next[MAXN], exd[MAXN]; struct Node
{
int strnum;
int palnum;
int nxt[];
};
Node node[MAXN];
int tot, root; int newnode()
{
node[tot].strnum = ;
node[tot].palnum = ;
memset(node[tot].nxt, -, sizeof(node[tot].nxt));
tot++;
return tot-;
} void pre_EXKMP(char x[], int m)
{
Next[] = m;
int j = ;
while(+j<m && x[+j]==x[+j]) j++;
Next[] = j;
int k = ;
for(int i = ; i<m; i++)
{
int p = Next[k]+k-;
int L = Next[i-k];
if(i+L<=p) Next[i] = L;
else
{
j = max(, p-i+);
while(i+j<m && x[i+j]==x[+j]) j++;
Next[i] = j;
k = i;
}
}
} void EXKMP(char x[], int m, char y[], int n, int _L, int type)
{
pre_EXKMP(x, m);
int j = ;
while(j<n && j<m && x[j]==y[j]) j++;
exd[] = j;
int k = ;
for(int i = ; i<n; i++)
{
int p = exd[k]+k-;
int L = Next[i-k];
if(i+L<=p) exd[i] = L;
else
{
j = max(,p-i+);
while(i+j<n && j<m && y[i+j]==x[+j]) j++;
exd[i] = j;
k = i;
}
} //当type为0时,求的是字符串的后缀是否为回文串
//当type为1时,求的是字符串的逆串是否为回文串。实际就是求字符串的前缀是否为回文串。
for(int i = ; i<n; i++) //判断后缀是否为回文串
ispal[type][_L+i] = (i+exd[i]==n);
} void insert(char x[], int n, int L)
{
int tmp = root;
for(int i = ; i<n; i++)
{
int ch = x[i]-'a';
node[tmp].palnum += ispal[][L+i]; //如果后缀是回文串,就把统计数放在父节点。
if(node[tmp].nxt[ch]==-) node[tmp].nxt[ch] = newnode();
tmp = node[tmp].nxt[ch];
}
node[tmp].strnum++; //字符串数+1
} int search(char x[], int n, int L)
{
int ret = ;
int tmp = root;
for(int i = ; i<n; i++)
{
int ch = x[i]-'a';
tmp = node[tmp].nxt[ch];
if(tmp==-) break;
if((i<n-&&ispal[][L+i+]) || i==n-) //x作为长串,如果剩下的部分(后缀)是回文串
ret += node[tmp].strnum;
}
if(tmp!=-) ret += node[tmp].palnum; //x作为短串,加上后缀是回文串的长串
return ret;
} int main()
{
int n;
while(scanf("%d", &n)!=EOF)
{
tot = ;
root = newnode(); int L = ;
memset(ispal, , sizeof(ispal));
for(int i = ; i<n; i++)
{
//因为不确定每个字符串的最长长度,所以只好用地址的形式存储字符串
//用string的话,速度会变慢
scanf("%d%s", &len[i], str+L);
beg[i] = L;
L += len[i];
memcpy(res+beg[i], str+beg[i], len[i]);
reverse(res+beg[i], res+beg[i]+len[i]); EXKMP(res+beg[i], len[i], str+beg[i], len[i], beg[i], ); //求字符串后缀是否为回文串
EXKMP(str+beg[i], len[i], res+beg[i], len[i], beg[i], ); //求字符串的逆串的后缀(即字符串的前缀)是否为回文串。
insert(str+beg[i], len[i], beg[i]); //插入Trie树中
} LL ans = ;
for(int i = ; i<n; i++)
ans += search(res+beg[i], len[i], beg[i]); //用字符串的逆串去查找 printf("%lld\n", ans);
}
}

POJ3376 Finding Palindromes —— 扩展KMP + Trie树的更多相关文章

  1. POJ 3376 Finding Palindromes(扩展kmp+trie)

    题目链接:http://poj.org/problem?id=3376 题意:给你n个字符串m1.m2.m3...mn 求S = mimj(1=<i,j<=n)是回文串的数量 思路:我们考 ...

  2. poj3376 Finding Palindromes【exKMP】【Trie】

    Finding Palindromes Time Limit: 10000MS   Memory Limit: 262144K Total Submissions:4710   Accepted: 8 ...

  3. 【string】KMP, 扩展KMP,trie,SA,ACAM,SAM,最小表示法

    [KMP] 学习KMP,我们先要知道KMP是干什么的. KMP?KMPLAYER?看**? 正如AC自动机,KMP为什么要叫KMP是因为它是由三个人共同研究得到的- .- 啊跑题了. KMP就是给出一 ...

  4. KMP 、扩展KMP、Manacher算法 总结

    一. KMP 1 找字符串x是否存在于y串中,或者存在了几次 HDU1711 Number Sequence HDU1686 Oulipo HDU2087 剪花布条 2.求多个字符串的最长公共子串 P ...

  5. POJ 3376 Finding Palindromes (tire树+扩展kmp)

    很不错的一个题(注意string会超时) 题意:给你n串字符串,问你两两匹配形成n*n串字符串中有多少个回文串 题解:我们首先需要想到多串字符串存储需要trie树(关键),然后我们正序插入倒序匹配就可 ...

  6. 字符串 --- KMP Eentend-Kmp 自动机 trie图 trie树 后缀树 后缀数组

    涉及到字符串的问题,无外乎这样一些算法和数据结构:自动机 KMP算法 Extend-KMP 后缀树 后缀数组 trie树 trie图及其应用.当然这些都是比较高级的数据结构和算法,而这里面最常用和最熟 ...

  7. 【9.15校内测试】【寻找扩展可行域+特判】【Trie树 异或最小生成树】【模拟:)】

    之前都没做出来的同名题简直留下心理阴影啊...其实这道题还是挺好想的QAQ 可以发现,鸟可以走到的点是如下图这样扩展的: 由$(0,0)$向两边扩展,黑色是可以扩展到的点,红色是不能扩展的点,可以推出 ...

  8. poj3376 KMP+字典树求回文串数量(n*n)

    Finding Palindromes Time Limit: 10000MS   Memory Limit: 262144K Total Submissions: 4043   Accepted: ...

  9. poj 3376 Finding Palindromes

    Finding Palindromes http://poj.org/problem?id=3376 Time Limit: 10000MS   Memory Limit: 262144K       ...

随机推荐

  1. 洛谷 [P2216] 理想的正方形

    二维单调队列 先横向跑一边单调队列,记录下每一行长度为n的区间的最值 在纵向跑一边单调队列,得出结果 注意,mi要初始化为一个足够大的数 #include <iostream> #incl ...

  2. Yii 之数据库查询

    模型代码: <?php namespace app\models; use yii\db\ActiveRecord; class Test extends ActiveRecord{ } 控制器 ...

  3. 最短路中部分点只能从中任意选取K个问题

    题意:给N个点,还有另外m个点(其中只能选K个),求最短路. 思路:在SPFA的基础上,用一个数组来统计,在某点入队时(要拓展其他点了),若该点是m个点中的,则count[i]=原来的+1:若不是,则 ...

  4. T1245 最小的N个和 codevs

    http://codevs.cn/problem/1245/  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 有两个长度 ...

  5. noip2013货车运输

    P1967 货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过 ...

  6. solr 简要笔记

    创建搜索1 创建directory 2.分词器 analyzer 3indexwriter writer dic an 4.document doc.add writer.adddocument(do ...

  7. UICollectionView 讲解

    什么是UICollectionView UICollectionView是一种新的数据展示方式,简单来说可以把他理解成多列的UITableView(请一定注意这是 UICollectionView的最 ...

  8. iOS App 项目:会员卡管理系统设计方案

    1.需求描写叙述 店主须要管理自己的会员信息和充值卡信息以及消费纪录 店主觉得购买电脑和外设成本太高,并且店面没有地方容纳这些设备 店主希望通过手机来完毕这些功能.但尽量不产生流量.对网络要求较低 店 ...

  9. python 学习笔记 13 -- 经常使用的时间模块之time

    Python 没有包括相应日期和时间的内置类型.只是提供了3个相应的模块,能够採用多种表示管理日期和时间值: *    time 模块由底层C库提供与时间相关的函数.它包括一些函数用于获取时钟时间和处 ...

  10. 怎样求结构体成员的偏移地址 || 结构体的 sizeof 总结

    C 语言中同意将值为 0 的变量强制转换成任一类型的指针,转换结果是一个NULL指针. (type*)0 // 一个 type 类型的NULL指针 用这个指针訪问结构体内的成员是非法的,可是 & ...