HDU 1299Diophantus of Alexandria
Diophantus of Alexandria
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3210 Accepted Submission(s): 1269
Consider the following diophantine equation:
1 / x + 1 / y = 1 / n where x, y, n ∈ N+ (1)
Diophantus is interested in the following question: for a given n, how many distinct solutions (i. e., solutions satisfying x ≤ y) does equation (1) have? For example, for n = 4, there are exactly three distinct solutions:
1 / 5 + 1 / 20 = 1 / 4
1 / 6 + 1 / 12 = 1 / 4
1 / 8 + 1 / 8 = 1 / 4
Clearly, enumerating these solutions can become tedious for bigger values of n. Can you help Diophantus compute the number of distinct solutions for big values of n quickly?
4
1260
3
113
以前留下来的题目,今天才补。
题目大意就是给定n求有多少种x,y的组合 使得1/x+1/y=1/n;
因为x,y都大于n,这样我们可以设y=x+k 那么上边的等式可以化成x=n*n/k+n;
问题变成求有多少种x了,x是整数,多疑k要是n*n的因子才行.
由于任意一个数都可以表示成 n=p1^r1*p2^r2*p3^r3.....pi^ri 这种形式(其中pi是素数),那么因子的数量就是(r1+1)*(r2+1)*(r3+1)....*(ri+1).(因为每种pi可以选择ri个嘛也可以不选)
那么 n*n的因子数呢? 同理可得n*n的因子数为(2*r1+1)*(2*r2+1)*(2*r3+1)....*(2*ri+1)个
/* ***********************************************
Author :guanjun
Created Time :2016/10/9 18:38:22
File Name :hdu1299.cpp
************************************************ */
#include <bits/stdc++.h>
#define ull unsigned long long
#define ll long long
#define mod 90001
#define INF 0x3f3f3f3f
#define maxn 10010
#define cle(a) memset(a,0,sizeof(a))
const ull inf = 1LL << ;
const double eps=1e-;
using namespace std;
priority_queue<int,vector<int>,greater<int> >pq;
struct Node{
int x,y;
};
struct cmp{
bool operator()(Node a,Node b){
if(a.x==b.x) return a.y> b.y;
return a.x>b.x;
}
}; bool cmp(int a,int b){
return a>b;
}
int n;
int prime[];
int vis[];
int num;
void init(){
num=;
memset(vis,,sizeof vis);
int x=sqrt()+;
for(int i=;i<=x;i++){
if(!vis[i]){
prime[++num]=i;
for(int j=i;j<=x;j+=i)vis[j]=;
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
//freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
init();
int t;
cin>>t;
for(int k=;k<=t;k++){
scanf("%d",&n);
ll ans=;
int p,cnt;
for(int i=;i<=num;i++){
p=prime[i];
cnt=;
if(p*p>n)break;
while(n%p==){
cnt++;
n/=p;
}
ans*=(*cnt+);
}
if(n>)ans*=;
printf("Scenario #%d:\n",k);
printf("%lld\n\n",(ans+)/);
}
return ;
}
真是醉了,筛素数的时候,x=100000和10000是 num会出现诡异的变化....科学事故啊
HDU 1299Diophantus of Alexandria的更多相关文章
- hdu Diophantus of Alexandria(素数的筛选+分解)
Description Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of ...
- hdu 1299 Diophantus of Alexandria(数学题)
题目链接:hdu 1299 Diophantus of Alexandria 题意: 给你一个n,让你找1/x+1/y=1/n的方案数. 题解: 对于这种数学题,一般都变变形,找找规律,通过打表我们可 ...
- hdu 1299 Diophantus of Alexandria (数论)
Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
- 数学--数论--HDU 1299 +POJ 2917 Diophantus of Alexandria (因子个数函数+公式推导)
Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first ma ...
- hdu 1299 Diophantus of Alexandria
1/x + 1/y = 1/n 1<=n<=10^9给你 n 求符合要求的x,y有多少对 x<=y// 首先 x>n 那么设 x=n+m 那么 1/y= 1/n - 1/(n+ ...
- hdoj 1299 Diophantus of Alexandria
hdoj 1299 Diophantus of Alexandria 链接:http://acm.hdu.edu.cn/showproblem.php?pid=1299 题意:求 1/x + 1/y ...
- HDOJ 2111. Saving HDU 贪心 结构体排序
Saving HDU Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- hdu 4859 海岸线 Bestcoder Round 1
http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...
随机推荐
- VMware 12虚拟机下Ubuntu 16连不上网解决方法
打开自带Firefox浏览器,显示连接不上网,终端下 ping 也显示 unkown 解决方法: 1.打开虚拟机的“编辑”选项,选择“虚拟网络编辑器” 2.选择VMnet8(我不知道为啥VMnet ...
- #NOIP前数学知识总结
我好菜啊…… 欧拉函数 欧拉函数φ(n),是小于n且和n互质的正整数(包括1)的个数. 性质: 1.对于质数n: φ(n)=n-1 2..对于n=pk φ(n)=(p-1)*pk-1 3.积性函数的性 ...
- vue组件---组件注册
(1)组件名 在注册一个组件的时候,我们始终需要给它一个名字.比如在全局注册的时候我们已经看到了: Vue.component('my-component-name', { /* ... */ }) ...
- 40条常见的移动端Web页面问题解决方案
1.安卓浏览器看背景图片,有些设备会模糊.想让图片在手机里显示更为清晰,必须使用2x的背景图来代替img标签(一般情况都是用2倍).例如一个div的宽高是100100,背景图必须得200200,然后b ...
- 【解题报告】洛谷 P2571 [SCOI2010]传送带
[解题报告]洛谷 P2571 [SCOI2010]传送带今天无聊,很久没有做过题目了,但是又不想做什么太难的题目,所以就用洛谷随机跳题,跳到了一道题目,感觉好像不是太难. [CSDN链接](https ...
- 洛谷——P2827 蚯蚓
P2827 蚯蚓 题目描述 本题中,我们将用符号 \lfloor c \rfloor⌊c⌋ 表示对 cc 向下取整,例如:\lfloor 3.0 \rfloor = \lfloor 3.1 \rflo ...
- HDU - 2044 - 一只小蜜蜂...(dp)
题意: 如题 思路: 仔细观察图 1-4和3-6其实是一样的答案,那么所有的方案都可以相减,意思为全部转化为从1开始 剩下的就是观察规律,仔细观察5号,能到5号蜂房的只有3和4,3和4到5号蜂房只有一 ...
- MySQL Docker方式安装
以5.7版本为例 1 配置mysql配置文件编辑/etc/my.cnf,添加以下内容: [mysqld] skip-host-cache skip-name-resolve datadir=/var/ ...
- Spring AOP学习(六)
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- 有关HTML的相关基础问题:
有关HTML的相关基础问题:1.Doctype作用?严格模式与混杂模式如何区分?它们有何意义? 1)<!DICTYPE>声明位于文档中的最前面,处于<html>标签之前,告 ...