前期概念:

二叉树 完全二叉树 左序遍历 中序遍历 右序遍历 堆 小根堆 大根堆

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

Heapify (A, i)

l← left [i]

r← right [i]

if l ≤ heap-size [A] and A[l] > A[i]

then largest ← l

else largest ← i

if r ≤ heap-size [A] and A[i] > A[largest]

then largest ← r

if largest ≠ i

then exchange A[i] ↔ A[largest]

Heapify (A, largest)

堆的概念

在介绍堆排序之前,首先需要说明一下,堆是个什么玩意儿。

堆是一棵顺序存储的完全二叉树。

其中每个结点的关键字都不大于其孩子结点的关键字,这样的堆称为小根堆。

其中每个结点的关键字都不小于其孩子结点的关键字,这样的堆称为大根堆。

举例来说,对于n个元素的序列{R0, R1, ... , Rn}当且仅当满足下列关系之一时,称之为堆:

(1) Ri <= R2i+1 且 Ri <= R2i+2 (小根堆)

(2) Ri >= R2i+1 且 Ri >= R2i+2 (大根堆)

其中i=1,2,…,n/2向下取整;

要点:

首先,按堆的定义将数组R[0..n]调整为堆(这个过程称为创建初始堆),交换R[0]和R[n];

然后,将R[0..n-1]调整为堆,交换R[0]和R[n-1];

如此反复,直到交换了R[0]和R[1]为止。

以上思想可归纳为两个操作:

(1)根据初始数组去构造初始堆(构建一个完全二叉树,保证所有的父结点都比它的孩子结点数值大)。

(2)每次交换第一个和最后一个元素,输出最后一个元素(最大值),然后把剩下元素重新调整为大根堆。

当输出完最后一个元素后,这个数组已经是按照从小到大的顺序排列了。

先通过详细的实例图来看一下,如何构建初始堆。

—————————————————————————————————————————————————————

//代码

public class HeapSort {

private static int[] sort = new int[] { 1, 0, 10, 20, 3, 5, 6, 4, 9, 8, 12, 17, 34, 11 };

public static void main(String[] args) {

System.out.println("Before sort: " + Arrays.toString(sort));

// 没有子节点的才需要创建最大堆,从最后一个的父节点开始
int startIndex = ((sort.length - 1) - 1) >> 1;
// 从尾端开始创建最大堆,每次都是正确的堆
for (int i = startIndex; i >= 0; i--) {
maxHeapify(sort, sort.length, i);
} // 排序,最大值放在末尾,data虽然是最大堆,在排序后就成了递增的
// 末尾与头交换,交换后调整最大堆
for (int i = sort.length - 1; i > 0; i--) {
int temp = sort[0];
sort[0] = sort[i];
sort[i] = temp;
maxHeapify(sort, i, 0);
} System.out.println("After Heapsort : " + Arrays.toString(sort));

}

/**

  • 创建最大堆

    */

    private static void maxHeapify(int[] data, int heapSize, int index) {

    // 当前点与左右子节点比较

    int left = (index << 1) + 1;

    int right = (index << 1) + 2;

    int largest = index;

    if (left < heapSize && data[index] < data[left]) {

    largest = left;

    }

    if (right < heapSize && data[largest] < data[right]) {

    largest = right;

    }

    // 得到最大值后可能需要交换,如果交换了,其子节点可能就不是最大堆了,需要重新调整

    if (largest != index) {

    int temp = data[index];

    data[index] = data[largest];

    data[largest] = temp;

    maxHeapify(data, heapSize, largest);

    }

    }

}

//// end

备注:

参考链接地址:https://wenku.baidu.com/view/af5705ea856a561252d36f71.html

选择排序(2)——堆排序(heap sort)的更多相关文章

  1. [译]async/await中使用阻塞式代码导致死锁 百万数据排序:优化的选择排序(堆排序)

    [译]async/await中使用阻塞式代码导致死锁 这篇博文主要是讲解在async/await中使用阻塞式代码导致死锁的问题,以及如何避免出现这种死锁.内容主要是从作者Stephen Cleary的 ...

  2. Python入门篇-数据结构堆排序Heap Sort

    Python入门篇-数据结构堆排序Heap Sort 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.堆Heap 堆是一个完全二叉树 每个非叶子结点都要大于或者等于其左右孩子结点 ...

  3. 数据结构 - 堆排序(heap sort) 具体解释 及 代码(C++)

    堆排序(heap sort) 具体解释 及 代码(C++) 本文地址: http://blog.csdn.net/caroline_wendy 堆排序包括两个步骤: 第一步: 是建立大顶堆(从大到小排 ...

  4. 程序员必知的8大排序(二)-------简单选择排序,堆排序(java实现)

    程序员必知的8大排序(一)-------直接插入排序,希尔排序(java实现) 程序员必知的8大排序(二)-------简单选择排序,堆排序(java实现) 程序员必知的8大排序(三)-------冒 ...

  5. 牛客网Java刷题知识点之插入排序(直接插入排序和希尔排序)、选择排序(直接选择排序和堆排序)、冒泡排序、快速排序、归并排序和基数排序(博主推荐)

    不多说,直接上干货! 插入排序包括直接插入排序.希尔排序. 1.直接插入排序: 如何写成代码: 首先设定插入次数,即循环次数,for(int i=1;i<length;i++),1个数的那次不用 ...

  6. Python八大算法的实现,插入排序、希尔排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序、基数排序。

    Python八大算法的实现,插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得 ...

  7. 直接选择排序(Straight Selection Sort)

    1.定义 选择排序(Selection Sort)的基本思想是:每一趟从待排序的记录中选出关键字最小的记录,顺序放在已排好序的子文件的最后,直到全部记录排序完毕. 常用的选择排序方法有直接选择排序和堆 ...

  8. 简单选择排序(Simple Selection Sort)的C语言实现

    简单选择排序(Simple Selection Sort)的核心思想是每次选择无序序列最小的数放在有序序列最后 演示实例: C语言实现(编译器Dev-c++5.4.0,源代码后缀.cpp) 原创文章, ...

  9. 八大排序算法之三选择排序—简单选择排序(Simple Selection Sort)

    基本思想: 在要排序的一组数中,选出最小(或者最大)的一个数与第1个位置的数交换:然后在剩下的数当中再找最小(或者最大)的与第2个位置的数交换,依次类推,直到第n-1个元素(倒数第二个数)和第n个元素 ...

随机推荐

  1. vue项目国际化实现 vue-i18n使用详细教程

    1.安装vue-i18n: npm i vue-i18n -S 当然你也可以这样: <script src="https://unpkg.com/vue/dist/vue.js&quo ...

  2. 16位/32位/64位CPU的位究竟是说啥

    平时,我们谈论CPU,都会说某程序是32位编译,可以跑在32位机或64位机,或则是在下载某些开源包时,也分32位CPU版本或64CPU位版本,又或者在看计算机组成相关书籍时,特别时谈到X86 CPU时 ...

  3. 12Microsoft SQL Server 索引

    Microsoft SQL Server 索引 8.1创建索引 CREATE INDEX idx_name ON table_name(列名) --创建非聚集索引 use student go cre ...

  4. gym101343 2017 JUST Programming Contest 2.0

    A.On The Way to Lucky Plaza  (数论)题意:m个店 每个店可以买一个小球的概率为p       求恰好在第m个店买到k个小球的概率 题解:求在前m-1个店买k-1个球再*p ...

  5. 网络编程 - socket接收大数据

    通过socket,实现客户端发送命令,将服务端执行出的结果,反回到客户端,主要4个步骤:1.服务端返回数据: 2.服务端返回数据的大小: 3.客户端接收返回数据的大小: 4.客户端按返回数据大小接收数 ...

  6. Coin Toss(uva 10328,动态规划递推,限制条件,至少转至多,高精度)

    有n张牌,求出至少有k张牌连续是正面的排列的种数.(1=<k<=n<=100) Toss is an important part of any event. When everyt ...

  7. 「 COGS 2240 」 X 「 Luogu P2885 」 架设电话线

    解题思路 首先很容易就想到了一个二维的朴素的 $dp$. 设 $dp[i][j]$ 表示第 $i$ 个位置的电话线杆的高度为 $j$ 时的最小花费,就需要枚举第 $i$ 个电话线杆.第 $i$ 个电话 ...

  8. (C/C++学习)14.C语言字符串处理函数(二)

    说明:上节着重解释了字符串处理的库函数处理,这节将针对一些常用的需求,进行非库函数的处理. 一.去除某一个字符串中的某个字符 1.去除字符串右边的空格 void trimStrRightSpace(c ...

  9. springcloud中feign接值问题

    很多时候使用feign都接收不到传过来的数据,一般情况如下! 如果是基本数据类型的话,使用@RequestParam @RequestMapping(value = "/selectDeta ...

  10. 网络配置:IP+NETMASK+GATEWAY+DNS

    1.  IP IP地址(英语:Internet Protocol Address)是一种在Internet上的给主机编址的方式,也称为网际协议地址.常见的IP地址,分为IPv4与IPv6两大类. IP ...