前期概念:

二叉树 完全二叉树 左序遍历 中序遍历 右序遍历 堆 小根堆 大根堆

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

Heapify (A, i)

l← left [i]

r← right [i]

if l ≤ heap-size [A] and A[l] > A[i]

then largest ← l

else largest ← i

if r ≤ heap-size [A] and A[i] > A[largest]

then largest ← r

if largest ≠ i

then exchange A[i] ↔ A[largest]

Heapify (A, largest)

堆的概念

在介绍堆排序之前,首先需要说明一下,堆是个什么玩意儿。

堆是一棵顺序存储的完全二叉树。

其中每个结点的关键字都不大于其孩子结点的关键字,这样的堆称为小根堆。

其中每个结点的关键字都不小于其孩子结点的关键字,这样的堆称为大根堆。

举例来说,对于n个元素的序列{R0, R1, ... , Rn}当且仅当满足下列关系之一时,称之为堆:

(1) Ri <= R2i+1 且 Ri <= R2i+2 (小根堆)

(2) Ri >= R2i+1 且 Ri >= R2i+2 (大根堆)

其中i=1,2,…,n/2向下取整;

要点:

首先,按堆的定义将数组R[0..n]调整为堆(这个过程称为创建初始堆),交换R[0]和R[n];

然后,将R[0..n-1]调整为堆,交换R[0]和R[n-1];

如此反复,直到交换了R[0]和R[1]为止。

以上思想可归纳为两个操作:

(1)根据初始数组去构造初始堆(构建一个完全二叉树,保证所有的父结点都比它的孩子结点数值大)。

(2)每次交换第一个和最后一个元素,输出最后一个元素(最大值),然后把剩下元素重新调整为大根堆。

当输出完最后一个元素后,这个数组已经是按照从小到大的顺序排列了。

先通过详细的实例图来看一下,如何构建初始堆。

—————————————————————————————————————————————————————

//代码

public class HeapSort {

private static int[] sort = new int[] { 1, 0, 10, 20, 3, 5, 6, 4, 9, 8, 12, 17, 34, 11 };

public static void main(String[] args) {

System.out.println("Before sort: " + Arrays.toString(sort));

// 没有子节点的才需要创建最大堆,从最后一个的父节点开始
int startIndex = ((sort.length - 1) - 1) >> 1;
// 从尾端开始创建最大堆,每次都是正确的堆
for (int i = startIndex; i >= 0; i--) {
maxHeapify(sort, sort.length, i);
} // 排序,最大值放在末尾,data虽然是最大堆,在排序后就成了递增的
// 末尾与头交换,交换后调整最大堆
for (int i = sort.length - 1; i > 0; i--) {
int temp = sort[0];
sort[0] = sort[i];
sort[i] = temp;
maxHeapify(sort, i, 0);
} System.out.println("After Heapsort : " + Arrays.toString(sort));

}

/**

  • 创建最大堆

    */

    private static void maxHeapify(int[] data, int heapSize, int index) {

    // 当前点与左右子节点比较

    int left = (index << 1) + 1;

    int right = (index << 1) + 2;

    int largest = index;

    if (left < heapSize && data[index] < data[left]) {

    largest = left;

    }

    if (right < heapSize && data[largest] < data[right]) {

    largest = right;

    }

    // 得到最大值后可能需要交换,如果交换了,其子节点可能就不是最大堆了,需要重新调整

    if (largest != index) {

    int temp = data[index];

    data[index] = data[largest];

    data[largest] = temp;

    maxHeapify(data, heapSize, largest);

    }

    }

}

//// end

备注:

参考链接地址:https://wenku.baidu.com/view/af5705ea856a561252d36f71.html

选择排序(2)——堆排序(heap sort)的更多相关文章

  1. [译]async/await中使用阻塞式代码导致死锁 百万数据排序:优化的选择排序(堆排序)

    [译]async/await中使用阻塞式代码导致死锁 这篇博文主要是讲解在async/await中使用阻塞式代码导致死锁的问题,以及如何避免出现这种死锁.内容主要是从作者Stephen Cleary的 ...

  2. Python入门篇-数据结构堆排序Heap Sort

    Python入门篇-数据结构堆排序Heap Sort 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.堆Heap 堆是一个完全二叉树 每个非叶子结点都要大于或者等于其左右孩子结点 ...

  3. 数据结构 - 堆排序(heap sort) 具体解释 及 代码(C++)

    堆排序(heap sort) 具体解释 及 代码(C++) 本文地址: http://blog.csdn.net/caroline_wendy 堆排序包括两个步骤: 第一步: 是建立大顶堆(从大到小排 ...

  4. 程序员必知的8大排序(二)-------简单选择排序,堆排序(java实现)

    程序员必知的8大排序(一)-------直接插入排序,希尔排序(java实现) 程序员必知的8大排序(二)-------简单选择排序,堆排序(java实现) 程序员必知的8大排序(三)-------冒 ...

  5. 牛客网Java刷题知识点之插入排序(直接插入排序和希尔排序)、选择排序(直接选择排序和堆排序)、冒泡排序、快速排序、归并排序和基数排序(博主推荐)

    不多说,直接上干货! 插入排序包括直接插入排序.希尔排序. 1.直接插入排序: 如何写成代码: 首先设定插入次数,即循环次数,for(int i=1;i<length;i++),1个数的那次不用 ...

  6. Python八大算法的实现,插入排序、希尔排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序、基数排序。

    Python八大算法的实现,插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得 ...

  7. 直接选择排序(Straight Selection Sort)

    1.定义 选择排序(Selection Sort)的基本思想是:每一趟从待排序的记录中选出关键字最小的记录,顺序放在已排好序的子文件的最后,直到全部记录排序完毕. 常用的选择排序方法有直接选择排序和堆 ...

  8. 简单选择排序(Simple Selection Sort)的C语言实现

    简单选择排序(Simple Selection Sort)的核心思想是每次选择无序序列最小的数放在有序序列最后 演示实例: C语言实现(编译器Dev-c++5.4.0,源代码后缀.cpp) 原创文章, ...

  9. 八大排序算法之三选择排序—简单选择排序(Simple Selection Sort)

    基本思想: 在要排序的一组数中,选出最小(或者最大)的一个数与第1个位置的数交换:然后在剩下的数当中再找最小(或者最大)的与第2个位置的数交换,依次类推,直到第n-1个元素(倒数第二个数)和第n个元素 ...

随机推荐

  1. js判断是安卓 还是 ios webview

    判断原理:JavaScript是前端开发的主要语言,我们可以通过编写JavaScript程序来判断浏览器的类型及版本.JavaScript判断浏览器类型一般有两种办法,一种是根据各种浏览器独有的属性来 ...

  2. JAVA程序员面试笔试宝典3

    1.什么是线程?它与进程有什么区别?为什么要使用多线程 线程是指程序在执行过程中,能够执行程序代码的一个执行单元.进程是指一段正在执行的程序. 使用多线程可以减少程序的相应时间 与进程相比,线程的创建 ...

  3. 浅谈GFC

    Web页面的布局,我们常见的主要有“浮动布局(float)”.“定位布局(position)”.“行内块布局(inline-block)”.“CSS3的多栏布局(Columns)”.“伸缩布局(Fle ...

  4. Android 7.0系统代码调用安装apk时报错FileUriExposedException完美解决

    项目更新遇到问题   Android项目开发中经常遇到下载更新的需求,以前调用系统安装器执行安装操作代码如下: Intent intent = new Intent(); intent.setActi ...

  5. jQuery元素节点的插入

    jquery插入节点的的方法,总的来说有8种,但是只要学会了其中的两个就能理解全部了, 这里我们学习append()和appendTo()两个方法: append()方法是向元素的内部追加内容: &l ...

  6. Python使用Flask框架,结合Highchart,搭配数据功能模块,加载 HTML 表格数据

    参考链接:https://www.highcharts.com.cn/docs/data-modules 1.javascript代码 var chart = Highcharts.chart('co ...

  7. 类与类之间的关系UML模型图

    关联.依赖.聚合.组合.泛化.实现 类之间可能存在以下几种关系:关联(association).依赖(dependency).聚合(Aggregation,也有的称聚集).组合(Composition ...

  8. codeforces 372 Complete the Word(双指针)

    codeforces 372 Complete the Word(双指针) 题链 题意:给出一个字符串,其中'?'代表这个字符是可变的,要求一个连续的26位长的串,其中每个字母都只出现一次 #incl ...

  9. LA 3029 Subsequence

    LA 3029 A sequence of N positive integers (10 < N < 100 000), each of them less than or equal ...

  10. FJoi2017 1月20日模拟赛 直线斯坦纳树(暴力+最小生成树+骗分+人工构造+随机乱搞)

    [题目描述] 给定二维平面上n个整点,求该图的一个直线斯坦纳树,使得树的边长度总和尽量小. 直线斯坦纳树:使所有给定的点连通的树,所有边必须平行于坐标轴,允许在给定点外增加额外的中间节点. 如下图所示 ...