BNUOJ 1589 Closest Common Ancestors
Closest Common Ancestors
This problem will be judged on PKU. Original ID: 1470
64-bit integer IO format: %lld Java class name: Main
Input
nr_of_vertices
vertex:(nr_of_successors) successor1 successor2 ... successorn
...
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form:
nr_of_pairs
(u v) (x y) ...
The input file contents several data sets (at least one).
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.
Output
For example, for the following tree:
Sample Input
5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
(2 3)
(1 3) (4 3)
Sample Output
2:1
5:5
Hint
Source
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <climits>
#include <algorithm>
#include <cmath>
#define LL long long
#define INF 0x3f3f3f
using namespace std;
const int maxn = ;
vector<int>g[maxn];
vector<int>q[maxn];
int n,m,cnt[maxn],uf[maxn];
bool vis[maxn],indeg[maxn];
int Find(int x) {
if(x != uf[x])
uf[x] = Find(uf[x]);
return uf[x];
}
void tarjan(int u) {
int i;
uf[u] = u;
for(i = ; i < g[u].size(); i++) {
if(!vis[g[u][i]] && g[u][i] != u) {
tarjan(g[u][i]);
uf[g[u][i]] = u;
}
}
vis[u] = true;
for(i = ; i < q[u].size(); i++) {
if(vis[q[u][i]]) cnt[Find(q[u][i])]++;
}
}
int main() {
int i,j,u,v,k;
while(~scanf("%d",&n)) {
for(i = ; i <= n; i++) {
g[i].clear();
q[i].clear();
cnt[i] = ;
indeg[i] = false;
}
for(i = ; i < n; i++) {
scanf("%d:(%d)",&u,&k);
for(j = ; j < k; j++) {
scanf("%d",&v);
g[u].push_back(v);
indeg[v] = true;
}
}
scanf("%d",&m);
while(m--) {
scanf(" (%d %d)",&u,&v);
q[u].push_back(v);
q[v].push_back(u);
}
memset(vis,false,sizeof(vis));
memset(cnt,,sizeof(cnt));
for(i = ; i <= n; i++)
if(!indeg[i]) {
tarjan(i);
break;
}
for(i = ; i <= n; i++)
if(cnt[i]) printf("%d:%d\n",i,cnt[i]);
}
return ;
}
BNUOJ 1589 Closest Common Ancestors的更多相关文章
- POJ 1470 Closest Common Ancestors
传送门 Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 17306 Ac ...
- poj----(1470)Closest Common Ancestors(LCA)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 15446 Accept ...
- POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
- POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13372 Accept ...
- POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13370 Accept ...
- POJ 1470 Closest Common Ancestors 【LCA】
任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000 ...
- poj1470 Closest Common Ancestors [ 离线LCA tarjan ]
传送门 Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 14915 Ac ...
- poj——1470 Closest Common Ancestors
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 20804 Accept ...
- Closest Common Ancestors POJ 1470
Language: Default Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissio ...
随机推荐
- 51nod 1134最长递增子序列
1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素 ...
- 贪心/数学 Codeforces Round #212 (Div. 2) A. Two Semiknights Meet
题目传送门 /* 贪心/数学:还以为是BFS,其实x1 + 4 * k = x2, y1 + 4 * l = y2 */ #include <cstdio> #include <al ...
- 转 PHP Cookies
cookie 常用于识别用户. 什么是 Cookie? cookie 常用于识别用户.cookie 是服务器留在用户计算机中的小文件.每当相同的计算机通过浏览器请求页面时,它同时会发送 cookie. ...
- 440 K-th Smallest in Lexicographical Order 字典序的第K小数字
给定整数 n 和 k,找到 1 到 n 中字典序第 k 小的数字.注意:1 ≤ k ≤ n ≤ 109.示例 :输入:n: 13 k: 2输出:10解释:字典序的排列是 [1, 10, 11, 1 ...
- 理解http浏览器的协商缓存和强制缓存
阅读目录 一:浏览器缓存的作用是什么? 二:理解协商缓存 1 Last-Modified/if-Modify-Since 2 ETag/if-None-Match 三:理解强制缓存 回到顶部 一:浏览 ...
- .net 发送邮件验证码
using System;using System.Collections.Generic;using System.Linq;using System.Net;using System.Net.Ma ...
- LoadRunner脚本回放与设置
一.runtime setting 1.迭代次数设置与迭代步长(循环间隔时间) 2.日志打印设置 二.实时观看回放 1.动态回放与静态回放(静态回放时,不会有逐行高亮显示:动态回放时高亮显 ...
- php防止页面刷新代码
//代理IP直接退出 empty($_SERVER['HTTP_VIA']) or exit('Access Denied'); //防止快速刷新 session_start(); $seconds ...
- CREATE TABLE - 定义一个新表
SYNOPSIS CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } ] TABLE table_name ( { column_name data_ty ...
- 1434:【例题2】Best Cow Fences
1434:[例题2]Best Cow Fences 时间限制: 1000 ms 内存限制: 65536 KB提交数: 263 通过数: 146 [题目描述] 给定一个长度为n的 ...