Balancing Act
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 14070   Accepted: 5939

Description

Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
For example, consider the tree: 

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2

Source

【思路】
求树的重心
树的中心:删掉这个点后,所形成的连通块最大的最小。
dp[i]为删掉这个点后最大的连通块的值。
edge数组开小了runtime erroe 
【code】
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,x,y,G,sumedge,t;
int head[],size[],dad[],dp[];
struct Edge
{
int x,y,nxt;
Edge(int x=,int y=,int nxt=):x(x),y(y),nxt(nxt){}
}edge[];
void add(int x,int y)
{
edge[++sumedge]=Edge(x,y,head[x]);
head[x]=sumedge;
}
void init()
{
sumedge=;
memset(head,,sizeof(head));
memset(size,,sizeof(size));
memset(dad,,sizeof(dad));
memset(dp,,sizeof(dp));
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
}
void dfs(int x)
{
size[x]=;
for(int i=head[x];i;i=edge[i].nxt)
{
int v=edge[i].y;
if(dad[x]!=v)
{
dad[v]=x;
dfs(v);
size[x]+=size[v];
dp[x]=max(dp[x],size[v]);//最大的孩子
}
}
dp[x]=max(dp[x],n-size[x]);//不是子树的那一堆
}
void print()
{
int ans=0x7fffff;
for(int i=;i<=n;i++)
if(dp[i]<ans)ans=dp[i],G=i;
printf("%d %d\n",G,ans);
}
int main()
{
scanf("%d",&t);
while(t--)
{
init();
dfs();
print();
}
return ;
}
 

Balancing Act(树的重心)的更多相关文章

  1. POJ 1655 Balancing Act 树的重心

    Balancing Act   Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. ...

  2. 『Balancing Act 树的重心』

    树的重心 我们先来认识一下树的重心. 树的重心也叫树的质心.找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡. 根据树的重心的定义,我们可 ...

  3. POJ1655 Balancing Act(树的重心)

    题目链接 Balancing Act 就是求一棵树的重心,然后统计答案. #include <bits/stdc++.h> using namespace std; #define REP ...

  4. poj-1655 Balancing Act(树的重心+树形dp)

    题目链接: Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11845   Accepted: 4 ...

  5. PKU 1655 Balancing Act(树+树的重心)

    #include<cstdio> #include<cstring> #include<algorithm> #define maxn 20005 using na ...

  6. POJ 1655 - Balancing Act 树型DP

    这题和POJ 3107 - Godfather异曲同工...http://blog.csdn.net/kk303/article/details/9387251 Program: #include&l ...

  7. poj1655 Balancing Act 找树的重心

    http://poj.org/problem? id=1655 Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  8. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

  9. POJ 1655.Balancing Act 树形dp 树的重心

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14550   Accepted: 6173 De ...

  10. POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)

    关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...

随机推荐

  1. Spring MVC集成Spring Data Reids和Spring Session实现Session共享

    说明:Spring MVC中集成Spring Data Redis和Spring Session时版本是一个坑点,比如最新版本的Spring Data Redis已经不包含Jedis了,需要自行引入. ...

  2. Linux下使用curl进行http请求(转)

    curl在Linux下默认已经安装,Windows需要自行安装. 下载地址:https://curl.haxx.se/download.html Windows离线版本:链接:http://pan.b ...

  3. Java屏幕截图工具 捕获屏幕

    原文:http://www.open-open.com/code/view/1420037709781 import java.awt.BorderLayout; import java.awt.Co ...

  4. 【flyway】Exception encountered during context initialization - cancelling refresh attempt: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'flywayInitializer' def

    报错如下: "2018-03-20 12:58:09.585 WARN 18026 — [ restartedMain] ConfigServletWebServerApplicationC ...

  5. 【java】java base64编码与解码

    参考地址:http://blog.csdn.net/zhou_kapenter/article/details/62890262 要求:JDK1.8+ 使用java原生工具类即可实现 [这里展示字符串 ...

  6. linux驱动开发流程

    嵌入式linux驱动开发流程嵌入式系统中,操作系统是通过各种驱动程序来驾驭硬件设备的.设备驱动程序是操作系统内核和硬件设备之间的接口,它为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个 ...

  7. k-svd字典学习,稀疏编码

    1.     K-SVD usage: Design/Learn a dictionary adaptively to betterfit the model and achieve sparse s ...

  8. Spring官方文档翻译——15.1 介绍Spring Web MVC框架

    Part V. The Web 文档的这一部分介绍了Spring框架对展现层的支持(尤其是基于web的展现层) Spring拥有自己的web框架--Spring Web MVC.在前两章中会有介绍. ...

  9. STL review:vector & string & map & struct

    I.vector 1.头文件:#include<vector>                        //容器vector是一个能实现随机存取.插入删除的动态数组,还可以当栈使. ...

  10. 在vc6.0下编的对话框界面如果没做过其他处理,往往显的很生硬,怎么样才能使他有Windows XP的风格呢,其实也很简单,我们来看看下面两种方法。

    在vc6.0下编的对话框界面如果没做过其他处理,往往显的很生硬,怎么样才能使他有Windows XP的风格呢,其实也很简单,我们来看看下面两种方法.    方法一: 1.首先确认你在Windows   ...