Balancing Act
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 14070   Accepted: 5939

Description

Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
For example, consider the tree: 

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2

Source

【思路】
求树的重心
树的中心:删掉这个点后,所形成的连通块最大的最小。
dp[i]为删掉这个点后最大的连通块的值。
edge数组开小了runtime erroe 
【code】
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,x,y,G,sumedge,t;
int head[],size[],dad[],dp[];
struct Edge
{
int x,y,nxt;
Edge(int x=,int y=,int nxt=):x(x),y(y),nxt(nxt){}
}edge[];
void add(int x,int y)
{
edge[++sumedge]=Edge(x,y,head[x]);
head[x]=sumedge;
}
void init()
{
sumedge=;
memset(head,,sizeof(head));
memset(size,,sizeof(size));
memset(dad,,sizeof(dad));
memset(dp,,sizeof(dp));
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
}
void dfs(int x)
{
size[x]=;
for(int i=head[x];i;i=edge[i].nxt)
{
int v=edge[i].y;
if(dad[x]!=v)
{
dad[v]=x;
dfs(v);
size[x]+=size[v];
dp[x]=max(dp[x],size[v]);//最大的孩子
}
}
dp[x]=max(dp[x],n-size[x]);//不是子树的那一堆
}
void print()
{
int ans=0x7fffff;
for(int i=;i<=n;i++)
if(dp[i]<ans)ans=dp[i],G=i;
printf("%d %d\n",G,ans);
}
int main()
{
scanf("%d",&t);
while(t--)
{
init();
dfs();
print();
}
return ;
}
 

Balancing Act(树的重心)的更多相关文章

  1. POJ 1655 Balancing Act 树的重心

    Balancing Act   Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. ...

  2. 『Balancing Act 树的重心』

    树的重心 我们先来认识一下树的重心. 树的重心也叫树的质心.找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡. 根据树的重心的定义,我们可 ...

  3. POJ1655 Balancing Act(树的重心)

    题目链接 Balancing Act 就是求一棵树的重心,然后统计答案. #include <bits/stdc++.h> using namespace std; #define REP ...

  4. poj-1655 Balancing Act(树的重心+树形dp)

    题目链接: Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11845   Accepted: 4 ...

  5. PKU 1655 Balancing Act(树+树的重心)

    #include<cstdio> #include<cstring> #include<algorithm> #define maxn 20005 using na ...

  6. POJ 1655 - Balancing Act 树型DP

    这题和POJ 3107 - Godfather异曲同工...http://blog.csdn.net/kk303/article/details/9387251 Program: #include&l ...

  7. poj1655 Balancing Act 找树的重心

    http://poj.org/problem? id=1655 Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  8. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

  9. POJ 1655.Balancing Act 树形dp 树的重心

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14550   Accepted: 6173 De ...

  10. POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)

    关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...

随机推荐

  1. log4j配置(转载)

    Log4J的配置文件(Configuration File)就是用来设置记录器的级别.存放器和布局的,它可接key=value格式的设置或xml格式的设置信息.通过配置,可以创建出Log4J的运行环境 ...

  2. http状态码的分类

    状态码分类 转自http://www.cnblogs.com/TankXiao/archive/2013/01/08/2818542.html HTTP状态码被分为五大类, 目前我们使用的HTTP协议 ...

  3. 前端微服务-面向web平台级应用的设计

    从去年开始,前端领域就出现了一个‘微应用’的名词,说的是前端架构的一种设计思路,业内都把它和后端的微服务进行类比,当时忙于公司的项目.没有静下心来好好了解,现在项目结束,再加上最近看的几篇关于前端微服 ...

  4. Tomcat服务器解析“GET /JavaWebDemo1/1.jsp HTTP/1.1”

    (2)服务器收到http请求报文,返回http响应报文 Tomcat服务器解析“GET /JavaWebDemo1/1.jsp HTTP/1.1” Tomcat服务器解析“GET /JavaWebDe ...

  5. 普元OA平台介绍

    Primeton Portal提供了访问企业信息资源的统一入口,是一个面向企业的内容管理.信息发布和集成展现平台,提供了单点登录.内容管理.信息发布.应用集成.个性化等功能,能够帮助企业快速搭建一个集 ...

  6. Webstorm上面通过babel将es6转化为es5

    1.首先创建一个新的文件夹(名为do);2.然后再根目录下面新建一个package.json,只需要写明两个属性即name和version,这个没有必须要和下面我写的一致,可以自行定义. { &quo ...

  7. 【Todo】一些scala的实验 & 与Java的混合

    另外,如果要支持 java 和 scala混合build,可以看看这篇文章: http://www.cnblogs.com/yjmyzz/p/4694219.html Scala和Java实现Word ...

  8. 【转载】C#中的泛型

    1.1 C#中的泛型 .Net 1.1版本最受诟病的一个缺陷就是没有提供对泛型的支持.通过使用泛型,我们可以极大地提高代码的重用度,同时还可以获得强类型的支持,避免了隐式的装箱.拆箱,在一定程度上提升 ...

  9. [转载]php中深拷贝浅拷贝

    转自:http://cnn237111.blog.51cto.com/2359144/1283163 PHP中提供了一种对象复制的操作,clone.语法颇为简单: $a = clone $b; 1.浅 ...

  10. sql注入攻防 以php+mysql为例

    随着Web应用的高速发展和技术的不断成熟,对Web开发相关职位的需求量也越来越大,越来越多的人加入了Web开发的行列.但是由于程序员的水平参差不齐或是安全意识太低,很多程序员在编写代码时仅考虑了功能上 ...