题目

给你一个有n个顶点、m条边的无向带权图。需要擦除一些边使得剩余的边数不超过k,如果一个点在原始图到顶点1的最短距离为d,在删边后的图中到顶点的最短距离仍是d,则称这种点是 good。问如何删边,使得 good点最多。

分析

首先调用最短路算法求各点到顶点1的最短距离,同时记录下每点在最短路上的前一个顶点。然后从顶点1出发搜索一个大小为k的联通块即可(如果够k个)

代码

 #include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std; typedef long long ll; const ll INF = (ll) << ;
const int maxv = + ; //最大顶点数
const int maxe = * + ; //最大边数
ll dis[maxv]; //源到各顶点的最短距离
int vis[maxv]; //记录是否被收录,用来代替集合S
int head[maxv]; //采用链式前向星建图
int pre[maxv]; //最短路树,记录前一个节点 vector<int>ans; //记录答案
int n, m, k; //顶点数、边数、最大保留的边数 struct Node
{
int u;
ll d; //该节点的编号与距离
bool operator < (const Node x) const
{
return d > x.d;
}
}; struct Edge
{
int to, w, next;
}edge[maxe]; inline void addedge(int u, int v, int w, int id)
{
edge[id].to = v;
edge[id].w = w;
edge[id].next = head[u];
head[u] = id;
}
//s为起点
void Dijsktra(int s)
{
priority_queue<Node>q; //取出集合T中的最小值
memset(vis, , sizeof(vis));
memset(pre, -, sizeof(pre));
//memset(dis, INF, sizeof(dis)); //与邻接矩阵不同,这里初始化为INF就可以,原因自己想
for (int i = ; i <= n; i++) dis[i] = INF; dis[s] = ;
q.push(Node{ s, dis[s] });
while (!q.empty())
{
Node x = q.top(); q.pop();
int u = x.u; if (vis[u]) continue; vis[u] = true;
for (int i = head[u]; i != -; i = edge[i].next) //松弛与u直接相邻的顶点
{
int v = edge[i].to;
int w = edge[i].w;
if (!vis[v] && dis[u] + w < dis[v])
{
dis[v] = dis[u] + w;
pre[v] = u; //记录最短路树的父节点
q.push(Node{ v,dis[v] });
}
}
}
} //从s出发找出最短路树上的k个节点(不到k个就是全部节点)
void bfs(int s)
{
queue<int>q;
q.push(s);
while (!q.empty())
{
int u = q.front(); q.pop();
for (int e = head[u]; e != -; e = edge[e].next)
{
int v = edge[e].to;
if (pre[v] == u && ans.size() < k)
{
q.push(edge[e].to);
ans.push_back(e / + ); //无向边建图时存了两遍,真实序号位e/2+1
}
}
if (ans.size() >= k) break;
}
} int main()
{
while (scanf("%d%d%d",&n,&m,&k) == )
{
memset(head, -, sizeof(head));
int id = ;
for (int i = ; i < m; i++)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
addedge(u, v, w,id++); addedge(v, u, w,id++);
} Dijsktra(); ans.clear();
bfs();
int cnt = ans.size();
printf("%d\n", cnt);
for (int i = ; i < cnt; i++)
printf("%d%c", ans[i], i == cnt - ? '\n' : ' ');
}
return ;
}

参考链接:https://blog.csdn.net/SparkFucker/article/details/84024243

Codeforces 1076D——最短路算法的更多相关文章

  1. Dijkstra 最短路算法(只能计算出一条最短路径,所有路径用dfs)

    上周我们介绍了神奇的只有五行的 Floyd 最短路算法,它可以方便的求得任意两点的最短路径,这称为"多源最短路".本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做&q ...

  2. Dijkstra最短路算法

    Dijkstra最短路算法 --转自啊哈磊[坐在马桶上看算法]算法7:Dijkstra最短路算法 上节我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最 ...

  3. Floyd最短路算法

    Floyd最短路算法 ----转自啊哈磊[坐在马桶上看算法]算法6:只有五行的Floyd最短路算法 暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计 ...

  4. Book 最短路算法

    用HDU2544整理一下最近学的最短路算法 1.Dijkstra算法 原理:集合S表示已经找到最短路径的点,d[]表示当前各点到源点的距离 初始时,集合里面只有源点,当每个点u进入集合S时,用d[u] ...

  5. 近十年one-to-one最短路算法研究整理【转】

    前言:针对单源最短路算法,目前最经典的思路即标号算法,以Dijkstra算法和Bellman-Ford算法为根本演进了各种优化技术和算法.针对复杂网络,传统的优化思路是在数据结构和双向搜索上做文章,或 ...

  6. 【啊哈!算法】算法7:Dijkstra最短路算法

    上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”.例如求下图 ...

  7. 【啊哈!算法】算法6:只有五行的Floyd最短路算法

            暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程.         上图中有 ...

  8. Comet OJ 热身赛(E题)(处理+最短路算法)

    dijkstra 已经提交 已经通过 42.86% Total Submission:189 Total Accepted:81 题目描述 Eagle Jump公司正在开发一款新的游戏.泷本一二三作为 ...

  9. 【最短路算法】Dijkstra+heap和SPFA的区别

    单源最短路问题(SSSP)常用的算法有Dijkstra,Bellman-Ford,这两个算法进行优化,就有了Dijkstra+heap.SPFA(Shortest Path Faster Algori ...

随机推荐

  1. MySQL中的RAND()函数使用详解

    转自:https://www.jb51.net/article/66697.htm MySQL RAND()函数调用可以在0和1之间产生一个随机数: ? 1 2 3 4 5 6 7 mysql> ...

  2. pl/sql 远程连接oracl服务器方法

    在Oracle/network/admin中的tnsnames.ora中添加对应的如下代码: LISTENER_ORCL = (DESCRIPTION = (ADDRESS = (PROTOCOL = ...

  3. 任务28:RequestDelegate管道实现思路

    任务28:RequestDelegate管道实现思路 管道的实现机制 RequestDelegate是管道的核心.ApplicationBuilder就是接收了很多个RequestDelegae把它拼 ...

  4. Spring boot 启动报错:com.mongodb.MongoSocketOpenException: Exception opening socket

    详细错误信息: com.mongodb.MongoSocketOpenException: Exception opening socket at com.mongodb.connection.Soc ...

  5. Android HandlerThread源码解析

    在上一章Handler源码解析文章中,我们知道App的主线程通过Handler机制完成了一个线程的消息循环.那么我们自己也可以新建一个线程,在线程里面创建一个Looper,完成消息循环,可以做一些定时 ...

  6. hdoj1827

    图的强连通,缩点,求个入度为0的点的数量,和入度为0的点集里面最小的花费和. //很死板的题,模板题的一样的- #include<cstdio> #include<queue> ...

  7. linux 问题二 查看系统是32位还是64位

    方法: 1.uname -a 2.uname -m 3.file /sbin/init 4.arch 5.Settings -> Details 说明: 1. i386 适用于intel和AMD ...

  8. bzoj1257[CQOI2007]余数之和(除法分块)

    1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 6117  Solved: 2949[Submit][Statu ...

  9. Luogu P3393 逃离僵尸岛【最短路】By cellur925

    题目传送门 题目大意:(其实概括出来也就基本做完了hh)在一张有$n$个点,$m$条边的无向图上,有$k$个点是不能经过的,而与之距离不超过$s$的点,到他们会花费$Q$元,到其他点会花费$p$元,求 ...

  10. LuoguP1268树的重量【构造/思维】By cellur925

    题目传送门 Description 给你一个矩阵$M$,$M(i,j)$表示$i$到$j$的最短距离.定义树的重量为树上各边权之和,对于任意给出的合法矩阵$M$,已知它所能表示树的重量是唯一确定的.给 ...