描述
Like everyone, cows enjoy variety. Their current fancy is new shapes for pastures. The old rectangular shapes are out of favor; new geometries are the favorite.

I. M. Hei, the lead cow pasture architect, is in charge of creating a triangular pasture surrounded by nice white fence rails. She is supplied with N (3 <= N <= 40) fence segments (each of integer length Li (1 <= Li <= 40) and must arrange them into a triangular pasture with the largest grazing area. Ms. Hei must use all the rails to create three sides of non-zero length.

Help Ms. Hei convince the rest of the herd that plenty of grazing land will be available. Calculate the largest area that may be enclosed with a supplied set of fence segments.

输入

* Line 1: A single integer N

* Lines 2..N+1: N lines, each with a single integer representing one fence segment's length. The lengths are not necessarily unique.

输出

A single line with the integer that is the truncated integer representation of the largest possible enclosed area multiplied by 100. Output -1 if no triangle of positive area may be constructed.

样例输入

5
1
1
3
3
4

样例输出

692

提示

which is 100x the area of an equilateral triangle with side length 4

题目大意:

给定几条边,用上全部的边组成三角形,输出最大的三角形面积,若不存在,输出-1.
大体思路:

枚举所有可能出现的边的情况,在判断是否能成为三角形,然后进行处理

#include <bits/stdc++.h>
using namespace std;
const int N=;///40*40
int dp[N][N]={};///dp[i][j]代表能否构成i,j两边
int a[];
int area(int a,int b,int c)
{
double p=(a+b+c)/2.0;
return (int)*sqrt(p*(p-a)*(p-b)*(p-c));
}
int main()
{
int n,sum=;
cin>>n;
for(int i=;i<n;i++)
cin>>a[i],sum+=a[i];
dp[][]=;
for(int i=;i<n;i++)
for(int j=sum;j>=;j--)
for(int k=j;k>=;k--)
if(j>=a[i]&&dp[j-a[i]][k]||k>=a[i]&&dp[j][k-a[i]])
dp[j][k]=;
int maxs=-;
for(int i=sum;i>;i--)
for(int j=i;j>;j--)
{
if(dp[i][j])
{
int k=sum-i-j;
if(i<j+k||i+j>k)///判断三边是否组成三角形
maxs=max(maxs,area(i,j,k));
}
}
if(maxs==-) cout<<"-1"<<'\n';
else cout<<maxs<<'\n';
return ;
}

Triangular Pastures (二维01背包)的更多相关文章

  1. hdu3496 二维01背包

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=3496 //刚看题目以为是简单的二维01背包,but,,有WA点.. 思路:题中说,只能买M ...

  2. hdu 2126 Buy the souvenirs 二维01背包方案总数

    Buy the souvenirs Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. Leetcode_474. 一和零(二维01背包)

    每个字符串看成一个物品,两个属性是0和1的个数,转换为01背包. code class Solution { public: int w[605][2]; int dp[105][105]; int ...

  4. POJ 1948 Triangular Pastures【二维01背包】

    题意:给出n条边,用这n条边构成一个三角形,求三角形的最大面积. 先求面积,用海伦公式,s=sqrt(p*(p-a)*(p-b)*(p-c)),其中a,b,c分别为三角形的三条边,p为三角形的半周长, ...

  5. poj 1948二维01背包

    题意:给出不多于40个小棍的长度,求出用所有小棍组成的三角形的最大面积. 思路:三角形3边求面积,海伦公式:p=(a+b+c)/2;S=p*(p-a)*(p-b)*(p-c);因为最大周长为1600  ...

  6. poj3260 平衡问题(二维01背包)

    http://www.cnblogs.com/ziyi--caolu/p/3228090.html http://blog.csdn.net/lyy289065406/article/details/ ...

  7. POJ - 1948 二维01背包

    T了两发,DP方程很简单粗暴 dp[i][j][k]:用前i物品使得容量分别为j和k的背包恰好装满 背包的调用只需一次即可,第一次T就是每次check都丧心病狂地背包一次 对于sum的枚举,其实i j ...

  8. HDU--2126 Buy the souvenirs(二维01背包)

    题目http://acm.hdu.edu.cn/showproblem.php?pid=2126 分析:有两个要求,一是计算最多可以选多少中纪念品:而是计算选最多纪念品的方案有多少种, 即统计最优方案 ...

  9. HDU-2159FATE(二维完全背包)

    FATE Problem Description 最 近xhd正在玩一款叫做FATE的游戏,为了得到极品装备,xhd在不停的杀怪做任务.久而久之xhd开始对杀怪产生的厌恶感,但又不得不通过杀怪来升完 ...

随机推荐

  1. 转:从《The C Programming Language》中学到的那些编程风格和设计思想

    这儿有一篇写的很好的读后感:http://www.cnblogs.com/xkfz007/articles/2566424.html   读书不是目的,关键在于思考.   很早就在水木上看到有人推荐& ...

  2. jmeter(十九)调试工具Debug Sampler

    一.Debug Sampler介绍: 使用Jmeter开发脚本时,难免需要调试,这时可以使用Jmeter的Debug Sampler,它有三个选项:JMeter properties,JMeter v ...

  3. [已读]编写高质量代码 改善JavaScript程序的188个建议

    吐槽一万遍,买的最后悔的一本,没有之一,大量篇幅抄袭<高性能javascript>,我记得还有部分抄袭<javascript精粹>,<javascript模式>有没 ...

  4. P1838 三子棋I

    题目描述 小a和uim喜欢互相切磋三子棋.三子棋大家都玩过是吗?就是在九宫格里面OOXX(别想歪了),谁连成3个就赢了. 由于小a比较愚蠢,uim总是让他先. 我们用9个数字表示棋盘位置: 123 4 ...

  5. Jquery 中使用String.Format

    第一种方法: String.format = function() { if (arguments.length == 0) return null; var str = arguments[0]; ...

  6. 用户控件引用Entity Framework

    背景: 今天在做软件的时候,出现了问题,我在项目里面添加了Entity Framework,在form的代码里引用没有问题,在userControl里引用就出了问题. 我检查app.config文件 ...

  7. 多线程wait和notify实现1212

    package threadT; public class ThreadMain { public static void main(String args[]) { final Object obj ...

  8. Spring数据访问1 - 数据源配置及数据库连接池的概念

    无论你要选择哪种数据访问方式,首先你都需要配置好数据源引用. Spring中配置数据源的几种方式 通过在JDBC驱动程序定义的数据源: 通过JNDI查找的数据源: 连接池的数据源: 对于即将发布到生产 ...

  9. Spring-bean(二)

    命名空间 自动装配 bean之间的关系:继承:依赖 使用外部属性文件 SpEL bean的生命周期 bean的后置处理器 (一)util命名空间 当用list,set等集合时,不能将集合作为独立的be ...

  10. CF778A(round 402 div.2 D) String Game

    题意: Little Nastya has a hobby, she likes to remove some letters from word, to obtain another word. B ...