传送门

每次拿完还得回去。。。

数据中有两个需要注意的地方:

  1. 存在桃树上有桃子但是摘 0 次的情况
  2. 题目中要求体力不能为0,因此就算到达了重点体力也不能为0,所以实际上允许使用的体力为 a - 1

把每个桃树想象成物品,体力和时间的最小值想象成空间

由于摘完一次就要回到起点,所以每颗桃树的体力为 2 * (x + y), x y 分别为此桃树对应的横纵坐标

#include <cstdio>
#include <iostream>
#define N 1001
#define M 1000001
#define min(x, y) ((x) < (y) ? (x) : (y))
#define max(x, y) ((x) > (y) ? (x) : (y)) int n, m, t, d, c, cnt;
int a[N][N], b[N][N], num[M], val[M], cost[M], f[M]; inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} int main()
{
int i, j, k;
n = read();
m = read();
t = read();
d = read();
c = min(t, d - 1);
for(i = 1; i <= n; i++)
for(j = 1; j <= m; j++)
{
a[i][j] = read();
if(a[i][j])
{
cnt++;
val[cnt] = a[i][j];
cost[cnt] = 2 * (i + j);
}
}
cnt = 0;
for(i = 1; i <= n; i++)
for(j = 1; j <= m; j++)
{
b[i][j] = read();
if(a[i][j])
{
++cnt;
num[cnt] = b[i][j];
}
}
for(i = 1; i <= cnt; i++)
for(j = c; j >= 1; j--)
for(k = 1; k <= num[i]; k++)
if(j >= cost[i] * k)
f[j] = max(f[j], f[j - k * cost[i]] + k * val[i]);
printf("%d\n", f[c]);
return 0;
}

  

[luoguP2760] 科技庄园(背包DP)的更多相关文章

  1. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

  2. hdu 5534 Partial Tree 背包DP

    Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  3. HDU 5501 The Highest Mark 背包dp

    The Highest Mark Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  4. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  5. noj [1479] How many (01背包||DP||DFS)

    http://ac.nbutoj.com/Problem/view.xhtml?id=1479 [1479] How many 时间限制: 1000 ms 内存限制: 65535 K 问题描述 The ...

  6. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  7. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  8. G - Surf Gym - 100819S -逆向背包DP

    G - Surf Gym - 100819S 思路 :有点类似 逆向背包DP , 因为这些事件发生后是对后面的时间有影响. 所以,我们 进行逆向DP,具体 见代码实现. #include<bit ...

  9. 树形DP和状压DP和背包DP

    树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...

随机推荐

  1. bzoj 2101: [Usaco2010 Dec]Treasure Chest 藏宝箱【区间dp】

    就是区间dp啦f[i][j]表示以i开头的长为j+1的一段的答案,转移是f[i][j]=s[i+l]-s[i-1]+min(f[i][j-1],f[i+1][j-1]),初始是f[i][1]=a[i] ...

  2. activiti遇到的问题

    1.act_hi_detail表里面没有数据 原因是没有加历史变量的判断 2.流程图添加网关,写流转表达式 比如请假流程   大于3天小于5天的条件:${请假实体类.属性名称}

  3. (博弈论)51NOD 1072 威佐夫游戏

    有2堆石子.A B两个人轮流拿,A先拿.每次可以从一堆中取任意个或从2堆中取相同数量的石子,但不可不取.拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出2堆石子的数量, ...

  4. Ubuntu 16.04 安装OpenSSH7.4

      前几天突然收到接到网安总队下发通知说我们在aws里面的服务器存在重大漏洞及安全隐患.必须在规定时间内修改.我们收到邮件打开Excel发现这些问题 是由于OpenSSH版本太低导致的.于是便安排紧急 ...

  5. RHEL5.6环境下yum安装MySQL

    RHEL5.6环境下yum安装MySQL记录,2017年2月20日 1.卸载原有的MySQL rpm -qa命令查询是否安装了MySQL [root@localhost mysql]# rpm -qa ...

  6. 数据传递-------ajaxJson------spring3mvc中使用ajax传json中文乱码解决

    参考来源:http://blog.csdn.net/dangerous_fire/article/details/25904225 第一种解决方法,适用所有情况 因为在controller中返回jso ...

  7. Modbus消息帧

    两种传输模式中(ASCII和RTU),传输设备以将Modbus消息转为有起点和终点的帧,这就允许接收的设备在消息起始处开始工作,读地址分配信息,判断哪一个设备被选中(广播方式则传给所以设备),判知何时 ...

  8. 重新学习Java——Java基本的程序设计结构(一)

    最近在实验室看到各位学长忙于找工作的面试与笔试,深感自己的不足,决定重新好好学习一下<Java核心技术>这本书,曾经靠这本书走入Java的世界,但是也有很多的地方被我疏漏过去了,因此也是作 ...

  9. Probabilistic locking in SQLite

    In SQLite, a reader/writer lock mechanism is required to control the multi-process concurrent access ...

  10. Windows Socket五种I/O模型——代码全攻略(转)

    Winsock 的I/O操作: 1. 两种I/O模式 阻塞模式:执行I/O操作完成前会一直进行等待,不会将控制权交给程序.套接字 默认为阻塞模式.可以通过多线程技术进行处理. 非阻塞模式:执行I/O操 ...