莫比乌斯函数 && HDU-1695
莫比乌斯函数定义:
$$\mu(d)=\begin{cases}
1 &\text{d = 1}\\
(-1)^r &\text{$d=p_1p_2...p_r,其中p_i为不同的素数$}\\
0 &\text{else}
\end{cases}$$
性质:
(1)$\sum_{d|n}\mu(d)=[n=1]$
(2)$\sum_{d|n}\frac{\mu(d)}{d}=\frac{\phi(n)}{n}$
莫比乌斯反演(没写定义域之类的):
$F(n)=\sum_{d|n}f(d)或F(n)=\sum_{d|n}f(\frac{n}{d}){\quad}{\Leftrightarrow}{\quad}f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d})或f(n)=\sum_{d|n}\mu(\frac{n}{d})F(d)$
$F(n)=\sum_{n|d}f(d){\quad}{\Leftrightarrow}{\quad}f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$(一般用的都是这种)
并不清楚为什么d没有上限
证明:https://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html
(性质1根据二项式定理直接证,那么反演公式可以根据性质1证(第二种反演的证法类似第一种反演,式子可以做类似的变换))
线性筛莫比乌斯函数
设mu[i]为i的莫比乌斯函数值
首先,mu[1]=1
mu[一个质数]=-1
对于一个合数x,设其最小质因子为p,那么它会被q=x/p筛掉,在它被q筛掉时,判断一下q%p是否为0,如果为0则说明q有至少1个质因子p,因此x有至少2个质因子p,那么mu[x]=0;否则mu[x]=-mu[q]
模板题:给定i,j,k,求$\sum_{i=1}^n{\sum_{j=1}^m{[(i,j)=k]}}$
设$f(x)=\sum_{i=1}^n{\sum_{j=1}^m{[(i,j)=x]}}$
设$F(x)=\sum_{x|d}{\sum_{i=1}^n{\sum_{j=1}^m{[(i,j)=d]}}}=\sum_{i=1}^n{\sum_{j=1}^m{[x|(i,j)]}}$
显然$F(x)={\lfloor}{\frac{n}{x}}{\rfloor}*{\lfloor}{\frac{m}{x}}{\rfloor}$
那么可以根据F(x)计算f(x)得到答案
(从中看出一类通用的关系:"满足f(a)是x的倍数/因数的a个数""满足f(a)等于x的a的个数"间的转换)
https://vjudge.net/problem/HDU-1695
(此题跟以上"模板题"题面类似,但不完全一样,要加一些特判)
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
#define N 100100
ll prime[N+],len,mu[N+];
bool nprime[N+];
ll a,c,n,m,k,ans,a2;
ll F(ll x) {return (m/x)*(n/x);}
ll F2(ll x) {return (n/x)*(n/x);}
int main()
{
ll i,j,T,TT;
mu[]=;
for(i=;i<=N;i++)
{
if(!nprime[i]) prime[++len]=i,mu[i]=-;
for(j=;j<=len&&i*prime[j]<=N;j++)
{
nprime[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else mu[i*prime[j]]=-mu[i];
}
}
scanf("%lld",&T);
for(TT=;TT<=T;TT++)
{
scanf("%lld%lld%lld%lld%lld",&a,&n,&c,&m,&k);
if(n>m) swap(n,m);
ans=a2=;
if(k>n||k==) goto xxx;
for(i=;i<=n/k;i++)
ans+=mu[i]*F(i*k);
for(i=;i<=n/k;i++)
a2+=mu[i]*F2(i*k);
ans-=(a2-)/;
xxx:;
printf("Case %lld: %lld\n",TT,ans);
}
return ;
}
另外:此题也可以不用莫比乌斯函数做,可以直接容斥
简单来讲就是先算出数组F,其中F[i]=F(i)
然后预处理出n个vector(d1,d2,..,dn),第i个表示i的所有因子(用枚举每个数的倍数的方式,而不是枚举因子)
然后从大到小枚举i,对于i除自身外所有的因子j,F[j]-=F[i]
对此题并没有什么特别的好处。。只是记一下有这种方法
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
#define N 100100
ll an[N+];
ll a,c,n,m,k,ans,a2;
ll F(ll x) {return (m/x)*(n/x);}
ll F2(ll x) {return (n/x)*(n/x);}
vector<ll> d[];
int main()
{
ll i,j,T,TT;
for(i=;i<=;i++)
for(j=*i;j<=;j+=i)
d[j].pb(i);
scanf("%lld",&T);
for(TT=;TT<=T;TT++)
{
scanf("%lld%lld%lld%lld%lld",&a,&n,&c,&m,&k);
if(n>m) swap(n,m);
ans=a2=;
if(k>n||k==) goto xxx;
for(i=;i<=n;i++) an[i]=F(i);
for(i=n;i>=;i--)
for(j=;j<d[i].size();j++)
an[d[i][j]]-=an[i];
ans+=an[k];
for(i=;i<=n;i++) an[i]=F2(i);
for(i=n;i>=;i--)
for(j=;j<d[i].size();j++)
an[d[i][j]]-=an[i];
a2+=an[k];
ans-=(a2-)/;
xxx:;
printf("Case %lld: %lld\n",TT,ans);
}
return ;
}
资料待看:
https://www.cnblogs.com/chenyang920/p/4811995.html
https://blog.csdn.net/danliwoo/article/details/51866867
莫比乌斯函数 && HDU-1695的更多相关文章
- hdu 1695 GCD 【莫比乌斯函数】
题目大意:给你 a , b , c , d , k 五个值 (题目说明了 你可以认为 a=c=1) x 属于 [1,b] ,y属于[1,d] 让你求有多少对这样的 (x,y)满足gcd(x,y)= ...
- hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion
http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...
- HDU 6053 TrickGCD 莫比乌斯函数/容斥/筛法
题意:给出n个数$a[i]$,每个数可以变成不大于它的数,现问所有数的gcd大于1的方案数.其中$(n,a[i]<=1e5)$ 思路:鉴于a[i]不大,可以想到枚举gcd的值.考虑一个$gcd( ...
- D - GCD HDU - 1695 -模板-莫比乌斯容斥
D - GCD HDU - 1695 思路: 都 除以 k 后转化为 1-b/k 1-d/k中找互质的对数,但是需要去重一下 (x,y) (y,x) 这种情况. 这种情况出现 x ,y ...
- 2017 ACM暑期多校联合训练 - Team 3 1008 HDU 6063 RXD and math (莫比乌斯函数)
题目链接 Problem Description RXD is a good mathematician. One day he wants to calculate: ∑i=1nkμ2(i)×⌊nk ...
- GCD HDU - 1695 莫比乌斯反演入门
题目链接:https://cn.vjudge.net/problem/HDU-1695#author=541607120101 感觉讲的很好的一个博客:https://www.cnblogs.com/ ...
- HDU 6053 TrickGCD (莫比乌斯函数)
题意:给一个序列A,要求构造序列B,使得 Bi <= Ai, gcd(Bi) > 1, 1 <= i <= n, 输出构造的方法数. 析:首先这个题直接暴力是不可能解决的,可以 ...
- hdu 1965 (莫比乌斯函数 莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 容斥
又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了. /** @Date : 2017-09-15 18:21:35 * @Fil ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
随机推荐
- bootstrap-Table服务端分页,获取到的数据怎么再页面的表格里显示
<table class="table table-hover" id="userTable" > <thead> <tr> ...
- mac系统不同java版本切换
#确认jdk版本 /usr/libexec/java_home #会得到下面信息(不同版本显示不一样) /Library/Java/JavaVirtualMachines/jdk1.7.0_60.jd ...
- java的自定义异常类
编写自定义异常类的模式 编写自定义异常类实际上是继承一个Exception标准异常类,用新定义的异常处理信息覆盖原有信息的过程.常用的编写自定义异常类的模式如下: public classCustom ...
- xamarin.android listview绑定数据及点击事件
前言 listview是用来显示数据列表的一个控件,今天给大家带来如何使用cursor进行数据绑定以及点击事件. 导读 1.如何创建一个listview 2.如何使用cursor进行绑定数据 3.li ...
- debian配置集锦
1 关闭蜂鸣 在/etc/bash.bashrc中加入下面的行: setterm -blength=0 2 debian bash路径显示太长 将.bashrc中的 else PS1='${debia ...
- QT下QThread学习(二)
学习QThread主要是为了仿照VC下的FTP服务器写个QT版本.不多说,上图. FTP服务器的软件结构在上面的分析中就已经解释了,今天要解决的就是让每一个客户端的处理过程都可以按一个线程来单独跑.先 ...
- oracle中的exists和not exists和in用法详解
in 是把外表和内表作hash 连接,而exists是对外表作loop循环,每次loop循环再对内表进行查询. not exists:做NL,对子查询先查,有个虚表,有确定值,所以就算子查询有NULL ...
- bzoj4406: [Wc2016]论战捆竹竿&&uoj#172. 【WC2016】论战捆竹竿
第二次在bzoj跑进前十竟然是因为在UOJ卡常致死 首先这个题其实就是一个无限背包 一般做法是同余最短路,就是bzoj2118: 墨墨的等式可以拿到30分的好成绩 背包是个卷积就分治FFT优化那么下面 ...
- bzoj2436: [Noi2011]Noi嘉年华
我震惊了,我好菜,我是不是该退役(苦逼) 可以先看看代码里的注释 首先我们先考虑一下第一问好了真做起来也就这个能想想了 那么离散化时间是肯定的,看一手范围猜出是二维DP,那对于两个会场,一个放自变量, ...
- Swift(一)简单值
Swift的源文件扩展名是.swift 按照国际惯例,学习一门新语言写的第一个程序都是在屏幕上输出一句 “Hello, world!” .在Swift里,一行代码就搞定了: 如果你以前写过C或者Obj ...