bzoj 5019: [Snoi2017]遗失的答案【dp+FWT】
满足GL的组合一定包含GL每个质因数最大次幂个最小次幂,并且能做限制这些数不会超过600个
然后质因数最多8个,所以可以状压f[s1][s2]为选s1集合满足最大限制选s2集合满足最小限制
dfs一下预处理出质因数只选一个质因数的初始状态
然后dp,做一个前缀一个后缀,设f[i][j]为前i个质因数选成集合j的方案数,g[i][j]为后i个质因数选成集合j的方案数,然后转移很好想,就是f[i][va[i]|j]+=f[i-1][j]*rs[i],其中rs是满足第i个质因数的方案数,g同理
然后我们需要合并出来一个“空出一个数”这样的东西来回答询问,合并的时候用orFWT即可
包含集合s的方案数也加到s的方案数里,就是andFWT的正变换部分,这样统计答案的时候就不用跑一遍了
然后回答的时候就是统计一下x极大极小质因数次幂的贡献然后直接查空出来这个集合的部分,最后乘上这个集合的选区方案数即可
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=100005,mod=1000000007,inv2=500000004;
int n,G,L,q,lm,p[N],tot,si[N],s[N],rs[N],va[N],con,f[605][70005],g[605][70005];
bool v[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void jia(int &x,int y)
{
x+=y;
(x>=mod)?x-=mod:0;
}
void jian(int &x,int y)
{
x-=y;
(x<0)?x+=mod:0;
}
void dfs(int w,long long v,int s1,int s2)
{
if(w==tot+1)
{
s[s1|(s2<<tot)]++;
return;
}
for(int i=0;i<=si[w];i++)
{
dfs(w+1,v,s1|((i==0)<<(w-1)),s2|((i==si[w])<<(w-1)));
v*=p[w];
if(v>n)
break;
}
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
void fwtor(int a[],int f)
{
for(int i=1;i<lm;i<<=1)
for(int j=0;j<lm;j+=(i<<1))
for(int k=0;k<i;k++)
{
if(f==1)
jia(a[i+j+k],a[j+k]);
else
jian(a[i+j+k],a[j+k]);
}
}
void fwtand(int a[],int f)
{
for(int i=1;i<lm;i<<=1)
for(int j=0;j<lm;j+=(i<<1))
for(int k=0;k<i;k++)
{
if(f==1)
jia(a[j+k],a[i+j+k]);
else
jian(a[j+k],a[i+j+k]);
}
}
int main()
{
n=read(),G=read(),L=read(),q=read();
if(L%G)
{
while(q--)
puts("0");
return 0;
}
L/=G,n/=G;
int x=L;
for(int i=2;i*i<=L;i++)
if(x%i==0)
{
p[++tot]=i;
while(x%i==0)
si[tot]++,x/=i;
}
if(x>1)
p[++tot]=x,si[tot]=1;
dfs(1,1,0,0);
int ss=(1<<(tot*2));
for(int i=0;i<ss;i++)
if(s[i])
va[++con]=i,rs[con]=ksm(2,s[i])-1;
f[0][0]=1;
for(int i=1;i<=con;i++)
{
for(int j=0;j<ss;j++)
jia(f[i][va[i]|j],1ll*f[i-1][j]*rs[i]%mod);
for(int j=0;j<ss;j++)
jia(f[i][j],f[i-1][j]);
}
g[con+1][0]=1;
for(int i=con;i>=1;i--)
{
for(int j=0;j<ss;j++)
jia(g[i][va[i]|j],1ll*g[i+1][j]*rs[i]%mod);
for(int j=0;j<ss;j++)
jia(g[i][j],g[i+1][j]);
}
lm=ss;
for(int i=0;i<=con;i++)
fwtor(f[i],1);
for(int i=1;i<=con+1;i++)
fwtor(g[i],1);
for(int i=0;i<=con;i++)
for(int j=0;j<ss;j++)
f[i][j]=1ll*f[i][j]*g[i+2][j]%mod;
for(int i=0;i<=con;i++)
fwtor(f[i],-1),fwtand(f[i],1);
// for(int i=0;i<=con;i++)
// {
// for(int j=0;j<ss;j++)
// cerr<<f[i][j]<<" ";
// cerr<<endl;
// }
while(q--)
{
int x=read(),s=0;
if(x%G||L%(x/G)||(x/G)>n)
{
puts("0");
continue;
}
x/=G;
for(int i=1;i<=tot;i++)
{
int sm=0;
while(x%p[i]==0)
x/=p[i],sm++;
if(sm==0)
s|=(1<<(i-1));
if(sm==si[i])
s|=(1<<(i-1+tot));
}
int w=lower_bound(&va[1],&va[con+1],s)-va-1;//cerr<<w<<endl;
printf("%lld\n",((1ll*f[w][(ss-1)^s]*(rs[w+1]+1)%mod*inv2%mod)+mod)%mod);
}
return 0;
}
bzoj 5019: [Snoi2017]遗失的答案【dp+FWT】的更多相关文章
- bzoj 5019 [Snoi2017]遗失的答案
题面 https://www.lydsy.com/JudgeOnline/problem.php?id=5019 题解 如果L不是G的倍数 答案为0 下面考虑G|L的情况 将G,L质因数分解 设$L= ...
- 【BZOJ5019】[SNOI2017]遗失的答案(FWT,动态规划)
[BZOJ5019][SNOI2017]遗失的答案(FWT,动态规划) 题面 BZOJ 题解 发现\(10^8\)最多分解为不超过\(8\)个本质不同质数的乘积. 而\(gcd\)和\(lcm\)分别 ...
- BZOJ5019[Snoi2017]遗失的答案——FWT+状压DP
题目描述 小皮球在计算出答案之后,买了一堆皮肤,他心里很开心,但是一不小心,就忘记自己买了哪些皮肤了.==|||万 幸的是,他还记得他把所有皮肤按照1-N来编号,他买来的那些皮肤的编号(他至少买了一款 ...
- 洛谷$P5366\ [SNOI2017]$遗失的答案 数论+$dp$
正解:数论$dp$ 解题报告: 传送门$QwQ$ 考虑先质因数分解.所以$G$就相当于所有系数取$min$,$L$就相当于所有系数取$max$ 这时候考虑,因为数据范围是$1e8$,$1e8$内最多有 ...
- bzoj5019: [Snoi2017]遗失的答案
Description 小皮球在计算出答案之后,买了一堆皮肤,他心里很开心,但是一不小心,就忘记自己买了哪些皮肤了.==|||万 幸的是,他还记得他把所有皮肤按照1-N来编号,他买来的那些皮肤的编号( ...
- [SNOI2017]遗失的答案
题目 首先\(G,L\)肯定会满足\(G|L\),否则直接全部输出\(0\) 之后我们考虑一下能用到的质因数最多只有\(8\)个 同时我们能选择的数\(x\)肯定是\(L\)的约数,还得是\(G\)的 ...
- BZOJ5019 SNOI2017遗失的答案(容斥原理)
显然存在方案的数一定是L的因数,考虑对其因子预处理答案,O(1)回答. 考虑每个质因子,设其在g中有x个,l中有y个,则要求所有选中的数该质因子个数都在[x,y]中,且存在数的质因子个数为x.y.对于 ...
- LOJ2257 SNOI2017 遗失的答案 容斥、高维前缀和
传送门 数字最小公倍数为\(L\)的充分条件是所有数都是\(L\)的约数,而\(10^8\)内最多约数的数的约数也只有\(768\)个.所以我们先暴力找到所有满足是\(L\)的约数.\(G\)的倍数的 ...
- luogu P5366 [SNOI2017]遗失的答案
luogu 首先gcd为\(G\),lcm为\(L\),有可能出现的数(指同时是\(G\)的因数以及是\(L\)的倍数)可以发现只有几百个.如果选出的数要能取到gcd,那么对于每种质因子,都要有一个数 ...
随机推荐
- STL algorithm算法max,max_elements(33)
max原型: std::max C++98 C++11 C++14 default (1) template <class T> const T& max (const T& ...
- 疯狂Java学习笔记(77)-----------凝视注意事项
代码凝视,能够说是比代码本身更重要.这里有一些方法能够确保你写在代码中的凝视是友好的: 不要反复阅读者已经知道的内容 能明白说明代码是做什么的凝视对我们是没有帮助的. // If the color ...
- 统计nginx日志单IP访问请求数排名
下面是我截取一段nginx日志 /Jan/::: +] "-" "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:31.0) Gec ...
- HDOJ 5091 Beam Cannon 扫描线
线段树+扫描线: 我们用矩形的中心点来描写叙述这个矩形,然后对于每一个敌舰,我们建立一个矩形中心的活动范围,即矩形中心在该范围内活动就能够覆盖到该敌舰.那么我们要求的问题就变成了:随意一个区域(肯定也 ...
- 常用的sql命令
1 mysql创建数据库 create database [database name]; 2 创建表 create table [table name]([first column name] [f ...
- Writing a Discard Server
Netty.docs: User guide for 4.x https://netty.io/wiki/user-guide-for-4.x.html
- (25) java web的struts2框架的使用-基于表单的文件上传
一,首先创建一个表单页面 <body> <form action="uploads" method="post" enctype=" ...
- Unity3D集成腾讯语音GVoice SDK
友情提示:最近发现腾讯GVoice有另一个官网,叫做腾讯游戏服务,经过对比发现这个网站才是最新的,下面我介绍的那个估计是已经废弃的,但不知道为啥老的网站没有直接链接到新网址而是仍然保留了.不过新官网的 ...
- 关于JAVA中的前期绑定 后期绑定(动态绑定)
前期绑定,在程序执行前根据编译时类型绑定,调用开销较小,如C语言只有前期绑定这种方法调用. 后期绑定,是指在运行时根据对象的类型进行绑定,又叫动态绑定或运行时绑定.实现后期绑定,需要某种机制支持,以便 ...
- YTU 2425: C语言习题 输出月份
2425: C语言习题 输出月份 时间限制: 1 Sec 内存限制: 128 MB 提交: 476 解决: 287 题目描述 编写一程序,输入月份号,输出该月的英文月名.例如,输入3,则输出Mar ...