题目传送门

Description

Siruseri 城中的道路都是单向的。不同的道路由路口连接。按照法律的规定, 在每个路口都设立了一个 Siruser
i 银行的 ATM 取款机。令人奇怪的是,Siruseri 的酒吧也都设在路口,虽然并不是每个路口都设有酒吧。Bandit
ji 计划实施 Siruseri 有史以来最惊天动地的 ATM 抢劫。他将从市中心 出发,沿着单向道路行驶,抢劫所有他
途径的 ATM 机,最终他将在一个酒吧庆 祝他的胜利。使用高超的黑客技术,他获知了每个 ATM 机中可以掠取的
现金数额。他希 望你帮助他计算从市中心出发最后到达某个酒吧时最多能抢劫的现金总数。他可 以经过同一路口
或道路任意多次。但只要他抢劫过某个 ATM 机后,该 ATM 机 里面就不会再有钱了。 例如,假设该城中有 6 个
路口,道路的连接情况如下图所示:
市中心在路口 1,由一个入口符号→来标识,那些有酒吧的路口用双圈来表示。每个 ATM 机中可取的钱数标在了
路口的上方。在这个例子中,Banditji 能抢 劫的现金总数为 47,实施的抢劫路线是:1-2-4-1-2-3-5。
输出一个整数,表示Banditji从市中心开始到某个酒吧结束所能抢劫的最多的现金总数。
 

Sol

感觉这题思路还是很明了的...先进行一遍tarjan求出图中所有的强连通分量,将他们缩点,然后在这个DAG中跑一遍spfa求最长路。

坑点:好像不能用dijkstra+heap求最长路&&主程序中调用tarjan不能仅一次。

 #include<cstdio>
#include<algorithm>
#include<stack>
#include<queue>
#include<cstring>
#define maxn 500090 using namespace std;
typedef long long ll; int n,m,tot,sp,P,dfs_clock,scc_cnt;
int head[maxn],Head[maxn],val[maxn],dfn[maxn],low[maxn],scc[maxn],pub[maxn];
bool vis[maxn];
ll ans,scc_val[maxn],dis[maxn];
struct node{
int to,next;
}edge[maxn],Edge[maxn];
stack<int>st; void add(int x,int y)
{
edge[++tot].to=y;
edge[tot].next=head[x];
head[x]=tot;
} void ADD(int x,int y)
{
Edge[++tot].to=y;
Edge[tot].next=Head[x];
Head[x]=tot;
} void tarjan(int u)
{
dfn[u]=low[u]=++dfs_clock;
st.push(u);
for(int i=head[u];i;i=edge[i].next)
{
int v=edge[i].to;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(!scc[v]) low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
scc_cnt++;
while()
{
int x=st.top();st.pop();
scc[x]=scc_cnt;
scc_val[scc_cnt]+=val[x];
if(x==u) break;
}
}
} void dijkstra(int s)
{
priority_queue<pair<ll,int> >q;
for(int i=;i<=scc_cnt;i++) dis[i]=-;
q.push(make_pair(,s));dis[s]=scc_val[s];
while(!q.empty())
{
int u=q.top().second;q.pop();
if(vis[u]) continue;
vis[u]=;
for(int i=Head[u];i;i=Edge[i].next)
{
int v=Edge[i].to;
if(dis[v]<dis[u]+scc_val[v])
{
dis[v]=dis[u]+scc_val[v];
q.push(make_pair(dis[v],v));
}
}
}
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int x=,y=;
scanf("%d%d",&x,&y);
add(x,y);
}
for(int i=;i<=n;i++) scanf("%d",&val[i]);
for(int i=;i<=n;i++)
if(!dfn[i]) tarjan(i);
tot=;
for(int x=;x<=n;x++)
for(int i=head[x];i;i=edge[i].next)
{
int y=edge[i].to;
if(scc[x]!=scc[y])
ADD(scc[x],scc[y]);
}
scanf("%d%d",&sp,&P);
for(int i=;i<=P;i++) scanf("%d",&pub[i]);
dijkstra(scc[sp]);
for(int i=;i<=P;i++)
ans=max(ans,dis[scc[pub[i]]]);
printf("%lld\n",ans);
return ;
}

bzoj1179: [Apio2009]Atm 【缩点+spfa最长路】的更多相关文章

  1. BZOJ1179 : [Apio2009]Atm 缩点+spfa

    1179: [Apio2009]Atm Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 2069  Solved: 826[Submit][Status ...

  2. 【bzoj1179】[Apio2009]Atm Tarjan缩点+Spfa最长路

    题目描述 输入 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号.接下来N行,每 ...

  3. Tarjan缩点+Spfa最长路【p3627】[APIO2009] 抢掠计划

    Description Siruseri 城中的道路都是单向的.不同的道路由路口连接.按照法律的规定, 在每个路口都设立了一个 Siruseri 银行的 ATM 取款机.令人奇怪的是,Siruseri ...

  4. 缩点+spfa最长路【bzoj】 1179: [Apio2009]Atm

    [bzoj] 1179: [Apio2009]Atm Description Siruseri 城中的道路都是单向的.不同的道路由路口连接.按照法律的规定, 在每个路口都设立了一个 Siruseri ...

  5. bzoj1179 [Apio2009]Atm——缩环最长路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1179 tarjan 缩环,然后求到有酒吧的点的最长路即可: 但一开始想缩环后用拓扑序求答案, ...

  6. [luogu3627 APIO2009] 抢掠计划 (tarjan缩点+spfa最长路)

    传送门 Description Input 第一行包含两个整数 N.M.N 表示路口的个数,M 表示道路条数.接下来 M 行,每行两个整数,这两个整数都在 1 到 N 之间,第 i+1 行的两个整数表 ...

  7. [BZOJ1179][APIO2009][强连通分量Tarjan+spfa]ATM

    [BZOJ1179][APIO2009]ATM Input 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i ...

  8. bzoj 1179: [Apio2009]Atm【tarjan+spfa】

    明明优化了spfa还是好慢-- 因为只能取一次值,所以先tarjan缩点,把一个scc的点权和加起来作为新点的点权,然后建立新图.在新图上跑spfa最长路,最后把酒吧点的dis取个max就是答案. # ...

  9. UVA11324 The Largest Clique (强连通缩点+DP最长路)

    <题目链接> 题目大意: 给你一张有向图 G,求一个结点数最大的结点集,使得该结点集中的任意两个结点 u 和 v 满足:要么 u 可以达 v,要么 v 可以达 u(u,v相互可达也行). ...

随机推荐

  1. SQL数据分组后取最大值或者取前几个值(依照某一列排序)

    今日做项目的时候,项目中遇到须要将数据分组后,分组中的最大值,想了想,不知道怎么做.于是网上查了查,最终找到了思路,经过比較这个查询时眼下用时最快的,事实上还有别的方法,可是我认为我们仅仅掌握最快的方 ...

  2. Elasticsearch 之 慘痛部署(分片移位)

    部署说明 硬件 server两台: 机器A:64G内存 机器B:32G内存 分片 共12个节点 2个查询节点.10个存储节点 8个主分片 1个复制分片(每一个分片都有一个副本分布在不同的节点上面) 每 ...

  3. winfrom桌面程序调用python解释器

    Winfrom桌面程序调用python解释器执行py脚本后台执行完成具体的功能,为什么要这样处理呢?因为我现在的大部分过项目都是后台的脚本处理,界面基本的输入完成之后,将参数按照规则传入到脚本的入口, ...

  4. 对FreeMarker技术的思考

    依照静态非静态来划分网页分为两种:静态网页和非静态网页,究其优缺点而言,静态网页在用户訪问的时候响应快,可是因为里面的数据是写死的.所以致命的缺陷就是数据不能动态显示.非静态页面(如jsp)数据能够动 ...

  5. Linux epoll 源码注释

    https://www.cnblogs.com/stonehat/p/8613505.html 这篇文章值得好好读,先留个记录,回头看. IO多路复用之epoll总结 - Anker's Blog - ...

  6. easyui 日期范围前后台的设置以及实现

    1.页面部分(引入相应的js) <td class="w40 tl pl10">从日期:</td> <td> <input class=& ...

  7. DataUtils

    package com.cc.hkjc.util; import java.text.ParseException;import java.text.SimpleDateFormat;import j ...

  8. laya在微信小游戏中加载BitmapFont失效的问题

    发布为微信小游戏后,在微信工具中测试时总是提示加载retry to load TheRed.fnt,并以error告终.由于没有任何出错信息,无奈之下只好阅读源码.对BitmapFont的处理分为两个 ...

  9. 使用putty连接虚拟机上的centos提示Network:connection refused

    转自:https://yeyuan.iteye.com/blog/1266484 今天早上开机之后,像往常一样使用putty连接linux的时候,突然提示Network:connection refu ...

  10. In-App Purchase Programming Guide----(六) ----Working with Subscriptions

    Working with Subscriptions Apps that use subscriptions have some additional behaviors and considerat ...