Reactor Cooling

time limit per test: 0.5 sec.

memory limit per test: 65536 KB
input: standard

output: standard
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing
the cooling system for the reactor. 



The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point
to its end point and not in the opposite direction. 



Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we
designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold: 





sum(j=1..N, fij) = sum(j=1..N, fji)

Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij ≤ cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going
from i-th to j-th nodes must be at least lij, thus it must be fij ≥ lij



Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above. 



Input


The first line of the input file contains the number N (1 ≤ N ≤ 200) - the number of nodes and and M — the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting
any two nodes and 0 ≤ lij ≤ cij ≤ 105 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th. 


Output


On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are
given in the input file. 


Sample test(s)


Input

Test #1 4 6 1 2 1 2 2 3 1 2 3 4 1 2 4 1 1 2 1 3 1 2 4 2 1 2 Test #2 4 6 1 2 1 3 2 3 1 3 3 4 1 3 4 1 1 3 1 3 1 3 4 2 1 3 
Output

Test #1 



NO 



Test #2 



YES 









1

1

周源的论文 

url=hFKPly4PzyfwfQJx4jVnR-xzaGfuBZ-gF4Las1qIe0Sg21NMblE7qFvXMcvbrkhTEv_-UoZIeX6lYNbh1FXfMcHKX_RcQXinjlM-5jticxu">一种简易的方法求解流量有上下界的网络中网络流问题

直接套路之

#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <bitset> using namespace std; #define PB push_back
#define MP make_pair
#define REP(i,n) for(int i=0;i<(n);++i)
#define FOR(i,l,h) for(int i=(l);i<=(h);++i)
#define DWN(i,h,l) for(int i=(h);i>=(l);--i)
#define CLR(vis,pos) memset(vis,pos,sizeof(vis))
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LINF 1000000000000000000LL
#define eps 1e-8 typedef long long ll; const int mm=1000005;
const int mn=22222; int n,m;
int node,s,t,edge,max_flow; int ver[mm],flow[mm],next[mm]; int head[mn],work[mn],dis[mn],q[mn]; int vis[mn]; inline void init(int _node,int _s,int _t)
{
node=_node, s=_s, t=_t;
for(int i=0;i<node;++i)
head[i]=-1;
edge=max_flow=0;
} inline void addedge(int u,int v,int c)
{
ver[edge]=v,flow[edge]=c,next[edge]=head[u],head[u]=edge++;
ver[edge]=u,flow[edge]=0,next[edge]=head[v],head[v]=edge++;
} bool Dinic_bfs()
{
int i,u,v,l,r=0;
for(i=0;i<node;++i) dis[i]=-1;
dis[ q[r++]=s ] = 0;
for(l=0;l<r;l++)
{
for(i=head[ u=q[l] ]; i>=0 ;i=next[i])
if(flow[i] && dis[ v=ver[i] ]<0)
{
dis[ q[r++]=v ]=dis[u]+1;
if(v==t) return 1;
}
}
return 0;
} int Dinic_dfs(int u,int exp)
{
if(u==t) return exp;
for(int &i=work[u],v,temp; i>=0 ;i=next[i])
{
if(flow[i] && dis[ v=ver[i] ]==dis[u]+1 && ( temp=Dinic_dfs(v,min(exp,flow[i])) )>0)
{
flow[i]-=temp;
flow[i^1]+=temp;
return temp;
}
}
return 0;
} int Dinic_flow()
{
int res,i;
while(Dinic_bfs())
{
for(i=0;i<node;++i) work[i]=head[i];
while( ( res=Dinic_dfs(s,INF) ) ) max_flow+=res;
}
return max_flow;
} int w[mn],l[mn]; int main()
{
int n,m;
while(cin>>n>>m){
CLR(w,0);
init(n+2,0,n+1);
int u,v,c;
REP(i,m){
scanf("%d%d%d%d",&u,&v,&l[i],&c);
addedge(u,v,c-l[i]);
w[u]-=l[i];
w[v]+=l[i];
}
int sum=0;
FOR(i,1,n){
if(w[i]>0){
addedge(s,i,w[i]);
sum+=w[i];
}
if(w[i]<0)
addedge(i,t,-w[i]);
}
int ans=Dinic_flow();
if(ans!=sum)
printf("NO\n");
else{
printf("YES\n");
REP(i,m)
printf("%d\n",flow[2*i+1]+l[i]);
}
}
return 0;
}

SGU 194 Reactor Cooling 无源汇带上下界可行流的更多相关文章

  1. ZOJ 2314 (sgu 194) Reactor Cooling (无源汇有上下界最大流)

    题意: 给定n个点和m条边, 每条边有流量上下限[b,c], 求是否存在一种流动方法使得每条边流量在范围内, 而且每个点的流入 = 流出 分析: 无源汇有上下界最大流模板, 记录每个点流的 in 和 ...

  2. SGU 194. Reactor Cooling(无源汇有上下界的网络流)

    时间限制:0.5s 空间限制:6M 题意: 显然就是求一个无源汇有上下界的网络流的可行流的问题 Solution: 没什么好说的,直接判定可行流,输出就好了 code /* 无汇源有上下界的网络流 * ...

  3. ZOJ 2314 Reactor Cooling(无源汇有上下界可行流)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 题目大意: 给n个点,及m根pipe,每根pipe用来流躺 ...

  4. Zoj 2314 Reactor Cooling(无源汇有上下界可行流)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意:    给n个点,及m根pipe,每根pipe用来流躺液体的,单向 ...

  5. LOJ [#115. 无源汇有上下界可行流](https://loj.ac/problem/115)

    #115. 无源汇有上下界可行流 先扔个板子,上下界的东西一点点搞,写在奇怪的合集里面 Code: #include <cstdio> #include <cstring> # ...

  6. 2018.08.20 loj#115. 无源汇有上下界可行流(模板)

    传送门 又get到一个新技能,好兴奋的说啊. 一道无源汇有上下界可行流的模板题. 其实这东西也不难,就是将下界变形而已. 准确来说,就是对于每个点,我们算出会从它那里强制流入与流出的流量,然后与超级源 ...

  7. [loj#115] 无源汇有上下界可行流 网络流

    #115. 无源汇有上下界可行流 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据   题 ...

  8. loj#115. 无源汇有上下界可行流

    \(\color{#0066ff}{ 题目描述 }\) 这是一道模板题. \(n\) 个点,\(m\) 条边,每条边 \(e\) 有一个流量下界 \(\text{lower}(e)\) 和流量上界 \ ...

  9. 【LOJ115】无源汇有上下界可行流(模板题)

    点此看题面 大致题意: 给你每条边的流量上下界,让你判断是否存在可行流.若有,则还需输出一个合法方案. 大致思路 首先,每条边既然有一个流量下界\(lower\),我们就强制它初始流量为\(lower ...

随机推荐

  1. vim第五章 命令行模式

    vim第五章命令行模式 技巧 27 结识vim的命令行模式 在命令行模式中执行的命令有被称作ex命令    在按/调出查找提示符或者<C-r>=访问表示寄存器时 命令行模式也被激活     ...

  2. nginx反向代理+负载均衡+https

    A服务器(192.168.133.1)作为nginx代理服务器 B服务器(192.168.133.2)作为后端真实服务器 访问https://www.test.com请求从A服务器上反向代理到B服务器 ...

  3. 开源中国+soucetree

    参考链接:http://www.cocoachina.com/programmer/20151012/13682.html 1.创建一个工程

  4. 解开Future的神秘面纱之任务执行

    此文承接之前的博文 解开Future的神秘面纱之取消任务 补充一些任务执行的一些细节,并从全局介绍程序的运行情况. 任务提交到执行的流程 前文我们已经了解到一些Future的实现细节,这里我们来梳理一 ...

  5. [AHOI2009]维护序列 (线段树)

    题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,-,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...

  6. java之线程池面试题

    面试官:线程池有哪些?分别的作用是什么? 常用的线程池有: newSingleThreadExecutor newFixedThreadExecutor newCacheThreadExecutor ...

  7. cf575A Fibonotci

    Fibonotci sequence is an integer recursive sequence defined by the recurrence relation Fn = sn - 1·F ...

  8. Java线程的学习_线程池

    系统启动一个新线程需要很高的成本,因为它涉及与操作系统交互.在这种情况下,使用线程池可以很好地提高性能,尤其是当程序中需要创建大量生存期很短暂的线程时. 线程池在系统启动时即创建大量空闲的线程,程序将 ...

  9. Laravel 数据库操作之Eloquent ORM模型

    //模型中的相关代码 namespace App; use Illuminate\Database\Eloquent\Model; class Student extends Model{ //默认对 ...

  10. 重写enum的valueof方法等

    enum 对象的常用方法介绍 int compareTo(E o)           比较此枚举与指定对象的顺序. Class<E> getDeclaringClass()        ...