单调队列&单调栈 基础
参考博客https://www.cnblogs.com/tham/p/8038828.html
例题 poj 2823
Time Limit: 12000MS | Memory Limit: 65536K | |
Total Submissions: 67137 | Accepted: 19061 | |
Case Time Limit: 5000MS |
Description
The array is [1 3 -1 -3 5 3 6 7], and k is 3.
Window position | Minimum value | Maximum value |
---|---|---|
[1 3 -1] -3 5 3 6 7 | -1 | 3 |
1 [3 -1 -3] 5 3 6 7 | -3 | 3 |
1 3 [-1 -3 5] 3 6 7 | -3 | 5 |
1 3 -1 [-3 5 3] 6 7 | -3 | 5 |
1 3 -1 -3 [5 3 6] 7 | 3 | 6 |
1 3 -1 -3 5 [3 6 7] | 3 | 7 |
Your task is to determine the maximum and minimum values in the sliding window at each position.
Input
Output
Sample Input
8 3
1 3 -1 -3 5 3 6 7
Sample Output
-1 -3 -3 -3 3 3
3 3 5 5 6 7 题意 给出一个序列 n个数 求每个长度为k的子串的最大值和最小值
解析 如果用尺取写的话 失匹的话就要花费o(k)的复杂度去维护最大值 最小值 总时间复杂度o(n*k) 数据卡的死就肯定超时
我们发现维护最大最最小值的时候 发现有很多重复的比较 所以我们可以维护一个最值数组 使它严格单调 这样直接取第一个元素就好了(单调队列)。
AC代码(c++)
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <string>
#include <queue>
#include <map>
#include <vector>
using namespace std;
const int maxn = 1e6+;
const int inf = 0x3f3f3f3f,mod = ;
const double epx = 1e-;
typedef long long ll;
struct node
{
int x,y; //x值 y下标
}v[maxn];
int a[maxn],mn[maxn],mx[maxn];
int n,m;
void getmin()
{
int head=,tail=;
for(int i=;i<m;i++)
{
while(head<=tail&&a[i]<=v[tail].x)tail--;
v[++tail].x=a[i],v[tail].y=i;
}
for(int j=m;j<=n;j++)
{
while(head<=tail&&a[j]<=v[tail].x)tail--;
v[++tail].x=a[j],v[tail].y=j;
while(j-v[head].y>=m)head++;
mn[j]=v[head].x;
}
}
void getmax()
{
int head=,tail=;
for(int i=;i<m;i++)
{
while(head<=tail&&a[i]>=v[tail].x)tail--;
v[++tail].x=a[i],v[tail].y=i;
}
for(int j=m;j<=n;j++)
{
while(head<=tail&&a[j]>=v[tail].x)tail--;
v[++tail].x=a[j],v[tail].y=j;
while(j-v[head].y>=m)head++;
mx[j]=v[head].x;
}
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
getmax();
getmin();
for(int i=m;i<=n;i++)
{
printf(i!=n?"%d ":"%d\n",mn[i]);
}
for(int i=m;i<=n;i++)
{
printf(i!=n?"%d ":"%d\n",mx[i]);
}
}
单调队列&单调栈 基础的更多相关文章
- 单调队列 && 单调栈
单调队列 && 单调栈 单调队列 维护某个滑动区间的min or max,可用于dp的优化 以维护min为例,采用STL双端队列实现 每次加入元素x前 先检查队首元素==滑动后要删除的 ...
- 联赛模拟测试18 A. 施工 单调队列(栈)优化DP
题目描述 分析 对于 \(Subtask\ 1\),可以写一个 \(n^3\) 的 \(DP\),\(f[i][j]\) 代表第 \(i\) 个建筑高度为 \(j\) 时的最小花费,随便转移即可 时间 ...
- 数据结构录 之 单调队列&单调栈。
队列和栈是很常见的应用,大部分算法中都能见到他们的影子. 而单纯的队列和栈经常不能满足需求,所以需要一些很神奇的队列和栈的扩展. 其中最出名的应该是优先队列吧我觉得,然后还有两种比较小众的扩展就是单调 ...
- 单调队列&单调栈
单调队列 例题: Poj 2823给定一个数列,从左至右输出每个长度为m的数列段内的最小数和最大数.数列长度:N<=106,m<=N 对于单调队列,我们这样子来定义: 1.维护区间最值 2 ...
- 数据结构录 之 单调队列&单调栈。(转)
http://www.cnblogs.com/whywhy/p/5066306.html 队列和栈是很常见的应用,大部分算法中都能见到他们的影子. 而单纯的队列和栈经常不能满足需求,所以需要一些很神奇 ...
- 大视野 1012: [JSOI2008]最大数maxnumber(线段树/ 树状数组/ 单调队列/ 单调栈/ rmq)
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 9851 Solved: 4318[Submi ...
- 小Z爱序列(NOIP信(sang)心(bin)赛)From FallDream(粗制单调队列&单调栈的算法解析)
原题: 小Z最擅长解决序列问题啦,什么最长公共上升然后下降然后上升的子序列,小Z都是轻松解决的呢. 但是小Z不擅长出序列问题啊,所以它给了你一道签到题. 给定一个n个数的序列ai,你要求出满足下述条件 ...
- POJ 3494 Largest Submatrix of All 1’s 单调队列||单调栈
POJ 3494 Largest Submatrix of All 1’s Description Given a m-by-n (0,1)-matrix, of all its submatrice ...
- 单调队列&单调栈归纳
单调队列 求长度为M的区间内的最大(小)值 单调队列的基本操作,也就是经典的滑动窗口问题. 求长度为M的区间内最大值和最小值的最大差值 两个单调队列,求出长度为M的区间最大最小值的数组,分别求最大最小 ...
随机推荐
- [转]Using the Interop Activity in a .NET Framework 4 Workflow
本文转自:http://msdn.microsoft.com/en-us/library/ee264174(v=vs.100).aspx This topic applies to Windows W ...
- Oracle 的备份和恢复
Oracle数据库有三种标准的备份方法,它们分别是导出/导入(EXP/IMP).热备份和冷备 份.导出备件是一种逻辑备份,冷备份和热备份是物理备份. 一. 导出/导入(Export/Import) 利 ...
- 腾讯云COS对象存储的简单使用
叮当哥之前买了一年的腾讯云服务器,昨日偶然发现腾讯云送了叮当哥半年的cos对象存储服务器,于是就撸起袖子传了几张珍藏的高清大图上去,现将其上传的简单使用步骤总结一波(其它操作参加官方SDK文档API) ...
- js中,浏览器中不同元素位置属性解析
offset() 只对可见元素有效,获取匹配元素在当前视口的相对偏移,返回的对象有两个整型属性,top和left,像素计算: position() 相对父元素的偏移,position.left ...
- javascript中闭包与作用域的理解
很多js的框架与插件编写都用到了闭包,所以,阅读和掌握闭包很有必要.最近学习vue框架时,经常会猜想很多功能的native js实现,很多都应用到了闭包,闭包除了目前已知的一些特性,如:可以保持局部变 ...
- SQL Case 语句的使用
-----简单case 使用 select 学号,姓名, case 专业 when '金融系' then '1' when '材料成型及控制工程' then '2' else '3' end from ...
- 绿化VSCode
通过啃源码, 终于找到了解决办法, 设置环境变量: VSCODE_APPDATA=C:\Program Files\VSCode\UserData VSCODE_EXTENSIONS=%VSCODE_ ...
- 【译】x86程序员手册32-9.4 中断描述符表
9.4 Interrupt Descriptor Table 中断描述符表 The interrupt descriptor table (IDT) associates each interrupt ...
- QQ感叹号是什么鬼?原来是服务器波动,腾讯官方来辟谣了
今天晚上很多网友在用QQ发送消息的时候发现,自己发送的消息一直是感叹号❗到底是怎么回事呢?是消息都发不出去了吗?马浩周通过手机测试后发现,其实消息是可以发出去的,而官方手机QQ出来已经通知了,是服务器 ...
- freopen()重定向的打开和关闭
freopen函数 功能 使用不同的文件或模式重新打开流,即重定向. 实现重定向,把预定义的标准流文件定向到由path指定的文件中.(直观感觉/实际操作都像是把文件定向到流,难道是说,对流来说就是重定 ...