【BZOJ3960】DZY Loves Math V(数论)
题目:
分析:
orz跳瓜。
欧拉函数的公式:
\]
其中 \(p_i\) 取遍 \(n\) 的所有质因子。
考虑原式,把欧拉函数展开,得到:
\sum_{b_1|a_1}\sum_{b_2|a_2}\cdots\sum_{b_n|a_n}\prod p_j^{a_j}\frac{(p_j-1)}{p_j}\]
其中 \(p_j\) 取遍 \(\prod b_i\) 的所有质因子, \(\prod p_j^{a_j}=\prod b_i\)。
可以看出,对于每个质数 \(p\) ,它的贡献是独立的。设 \(a_j\) 中 \(p_i\) 的次数为 \(c_{ij}\) ,则答案为:
\]
其中 \(k_j\) 表示在第 \(j\) 个数中取了 \(p_i\) 的 \(k_j\) 次幂。当 \(\sum k_j=0\) (即 \(\prod b_i\) 不含质因子 \(p_i\) )时不乘 \(\frac{p_i-1}{p_i}\) ,这种情况中 \(p_i\) 对答案的贡献是乘 \(1\) (即最前面加的 \(1\) )。
上面的式子相当于(括号比较鬼畜,凑合看吧……):
\]
(即直接减去不合法的 \(p_i^{\sum k_j}=p_i^0=1\) )
然后可以暴力算。对于每一个质数预处理出它的幂的前缀和,并可以只枚举有质因子 \(p_i\) 的 \(a_j\) 。由于每个数的质因子种类数最多 \(10\) 个左右,所以总复杂度大约 \(O(10n)\),可以过。具体实现详见代码。
代码:
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cctype>
using namespace std;
namespace zyt
{
template<typename T>
inline bool read(T &x)
{
char c;
bool f = false;
x = 0;
do
c = getchar();
while (c != EOF && c != '-' && !isdigit(c));
if (c == EOF)
return false;
if (c == '-')
f = true, c = getchar();
do
x = x * 10 + c - '0', c = getchar();
while (isdigit(c));
if (f)
x = -x;
return true;
}
template<typename T>
inline void write(T x)
{
static char buf[20];
char *pos = buf;
do
*pos++ = x % 10 + '0';
while (x /= 10);
while (pos > buf)
putchar(*--pos);
}
typedef long long ll;
const int N = 1e5 + 10, MX = 1e6 + 10, B = 30, mod = 1e9 + 7;
int n, cnt, pow[B];
pair<int, int> prime[MX];
void get_prime(int a)
{
for (int i = 2; (ll)i * i <= a; i++)
if (a % i == 0)
{
prime[cnt++] = make_pair(i, 0);
while (a % i == 0)
++prime[cnt - 1].second, a /= i;
}
if (a > 1)
prime[cnt++] = make_pair(a, 1);
}
inline int power(int a, int b)
{
int ans = 1;
while (b)
{
if (b & 1)
ans = (ll)ans * a % mod;
a = (ll)a * a % mod;
b >>= 1;
}
return ans;
}
inline int inv(const int a)
{
return power(a, mod - 2);
}
int cal(const int l, const int r)
{
int p = prime[l].first;
int ans = 1, mx = 0;
for (int i = l; i <= r; i++)
mx = max(mx, prime[i].second);
pow[0] = 1;
for (int i = 1; i <= mx; i++)
pow[i] = (ll)pow[i - 1] * p % mod;
for (int i = 1; i <= mx; i++)
pow[i] = (pow[i] + pow[i - 1]) % mod;
for (int i = l; i <= r; i++)
ans = (ll)ans * pow[prime[i].second] % mod;
ans = (ans - 1 + mod) % mod;
ans = (ll)ans * (p - 1) % mod * inv(p) % mod;
return (ans + 1) % mod;
}
int work()
{
int n;
read(n);
for (int i = 0; i < n; i++)
{
int a;
read(a);
get_prime(a);
}
sort(prime, prime + cnt);
int pre = 0, ans = 1;
for (int i = 0; i < cnt; i++)
if (prime[i].first != prime[i + 1].first)
ans = (ll)ans * cal(pre, i) % mod, pre = i + 1;
write(ans);
return 0;
}
}
int main()
{
return zyt::work();
}
【BZOJ3960】DZY Loves Math V(数论)的更多相关文章
- BZOJ3560 DZY Loves Math V 数论 快速幂
原文链接http://www.cnblogs.com/zhouzhendong/p/8111725.html UPD(2018-03-26):蒟蒻回来重新学数论了.更新了题解和代码.之前的怼到后面去了 ...
- 【BZOJ 3560】 3560: DZY Loves Math V (欧拉函数)
3560: DZY Loves Math V Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 241 Solved: 133 Description ...
- BZOJ3561 DZY Loves Math VI 数论 快速幂 莫比乌斯反演
原文链接http://www.cnblogs.com/zhouzhendong/p/8116330.html UPD(2018-03-26):回来重新学数论啦.之前的博客版面放在更新之后的后面. 题目 ...
- BZOJ3560 : DZY Loves Math V
因为欧拉函数是非完全积性函数,所以可以考虑对每个数进行分解质因数,将每个质数的解乘起来即可. 对于一个质数$p$,设它在各个数中分别出现了$b_1,b_2,...b_n$次,那么由生成函数和欧拉函数的 ...
- BZOJ3560 DZY Loves Math V(欧拉函数)
对每个质因子分开计算再乘起来.使用类似生成函数的做法就很容易统计了. #include<iostream> #include<cstdio> #include<cmath ...
- bzoj 3560 DZY Loves Math V - 线性筛 - 扩展欧几里得算法
给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). Input 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. Output 仅一行答案. Sampl ...
- [BZOJ3560]DZY Loves Math V(欧拉函数)
https://www.cnblogs.com/zwfymqz/p/9332753.html 由于欧拉函数是积性函数,可以用乘法分配律变成对每个质因子分开算最后乘起来.再由欧拉函数公式和分配律发现就是 ...
- 【bzoj3560】DZY Loves Math V 欧拉函数
题目描述 给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). 输入 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. 输出 仅一行答案. 样例输入 3 ...
- bzoj DZY Loves Math V
Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 509 Solved: 284[Submit][Status][Discuss] Descriptio ...
随机推荐
- Spring 获取当前activeProfile
WebApplicationContext wac = WebApplicationContextUtils.getWebApplicationContext(getServletContext()) ...
- 【00】angular学习网站
[00] 学习资料: http://angularjs.cn/ 英文API:http://docs.angularjs.cn/api 中文API;http://www.apjs.n ...
- [luoguP1196] 银河英雄传说(并查集)
传送门 记录 up[x] 表示 x 上方有多少个 all[x] 表示当前连通的有多少个 find 的时候 和 合并的时候 更新一下即可 ——代码 #include <cstdio> #in ...
- CodeForces 367E Sereja and Intervals
CodeForces 3 67E (109 + 7). Two ways are considered distinct if there is such j(1 ≤ j ≤ n), that the ...
- NOIP2012 提高组合集
NOIP 2012 提高组 合集 D1 T1 Vigenère 密码 模拟题,观察到两个数对应位置-1相加的和%26就是对应的字母,按照这个性质模拟即可. #include <iostream& ...
- CH上的Think Bear#1模拟赛
题目:http://www.contesthunter.org/contest/CH%20Round%20%2352%20%20Thinking%20Bear%20%231%20(NOIP%E6%A8 ...
- Spring Boot在开发时实现热部署(开发时修改文件保存后自动重启应用)(spring-boot-devtools)
热部署是什么 大家都知道在项目开发过程中,常常会改动页面数据或者修改数据结构,为了显示改动效果,往往需要重启应用查看改变效果,其实就是重新编译生成了新的Class文件,这个文件里记录着和代码等对应的各 ...
- 《WF in 24 Hours》读书笔记 - Hour 2(1) - 第一个Workflow程序
创建第一个Workflow项目 1. 创建Workflow项目 – 选择Workflow Console Application 2. 添加CodeActivity 3. 打开CodeActivity ...
- Java 注解入门实例 && 注解传參
參考 概念:java提供了一种原程序中的元素关联不论什么信息和不论什么元数据的途径和方法 JDK内置系统注解: @Override 用于修饰此方法覆盖了父类的方法; @Deprecated 用于修饰已 ...
- hdu 3555 Bomb 【数位DP】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3555 题意:上一题是不要62 这个是"不要49" 代码: #include < ...