methods to avoid overfitting:

  1. Cross-Validation : Cross Validation in its simplest form is a one round validation, where we leave one sample as in-time validation and rest for training the model. But for keeping lower variance a higher fold cross validation is preferred.
  2. Early Stopping : Early stopping rules provide guidance as to how many iterations can be run before the learner begins to over-fit.
  3. Pruning : Pruning is used extensively while building CART models. It simply removes the nodes which add little predictive power for the problem in hand.
  4. Regularization : This is the technique we are going to discuss in more details. Simply put, it introduces a cost term for bringing in more features with the objective function. Hence, it tries to push the coefficients for many variables to zero and hence reduce cost term.

参考:

https://www.analyticsvidhya.com/blog/2015/02/avoid-over-fitting-regularization/


1、获取更多数据:解决过拟合最有效的方法

从数据源头获取更多数据

根据当前数据集估计数据分布参数,使用该分布产生更多数据

数据增强(Data Augmentation):通过一定规则扩充数据,比如图像平移、翻转、缩放、切割等

2、改变模型网络结构Architecture

减少网络的层数、神经元个数等均可以限制网络的拟合能力

3、Early stopping

对于每个神经元而言,其激活函数在不同区间的性能是不同的:

当网络权值较小时,神经元的激活函数工作在线性区,此时神经元的拟合能力较弱(类似线性神经元)。因为我们在初始化网络的时候一般都是初始为较小的权值。训练时间越长,部分网络权值可能越大。如果我们在合适时间停止训练,就可以将网络的能力限制在一定范围内。

3、正则化

4、增加噪声

1)在输入中增加噪声

2)在权值上增加噪声:在初始化网络的时候,用0均值的高斯分布作为初始化。

5、bagging:以随机森林(Rand Forests)为例,就是训练了一堆互不关联的决策树。但由于训练神经网络本身就需要耗费较多自由,所以一般不单独使用神经网络做Bagging。

6、boosting:既然训练复杂神经网络比较慢,那我们就可以只使用简单的神经网络(层数、神经元数限制等)。通过训练一系列简单的神经网络,加权平均其输出。

7、dropout

https://www.zhihu.com/question/59201590

how to avoid over-fitting?(机器学习中防止过拟合的方法,重要)的更多相关文章

  1. 机器学习中jupyter lab的安装方法以及使用的命令

    安装JupyterLab使用pip安装: pip install jupyterlab# 必须将用户级目录添加 到环境变量才能启动pip install --userbinPATHjupyter la ...

  2. 机器学习中模型泛化能力和过拟合现象(overfitting)的矛盾、以及其主要缓解方法正则化技术原理初探

    1. 偏差与方差 - 机器学习算法泛化性能分析 在一个项目中,我们通过设计和训练得到了一个model,该model的泛化可能很好,也可能不尽如人意,其背后的决定因素是什么呢?或者说我们可以从哪些方面去 ...

  3. 机器学习中的L1、L2正则化

    目录 1. 什么是正则化?正则化有什么作用? 1.1 什么是正则化? 1.2 正则化有什么作用? 2. L1,L2正则化? 2.1 L1.L2范数 2.2 监督学习中的L1.L2正则化 3. L1.L ...

  4. 深度学习中 --- 解决过拟合问题(dropout, batchnormalization)

    过拟合,在Tom M.Mitchell的<Machine Learning>中是如何定义的:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比 ...

  5. MIT一牛人对数学在机器学习中的作用给的评述

    MIT一牛人对数学在机器学习中的作用给的评述 转载自http://my.oschina.net/feedao/blog/52252,不过这个链接也是转载的,出处已经无从考证了.   感觉数学似乎总是不 ...

  6. 机器学习中的相似性度量(Similarity Measurement)

    机器学习中的相似性度量(Similarity Measurement) 在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间 ...

  7. paper 127:机器学习中的范数规则化之(二)核范数与规则项参数选择

    机器学习中的范数规则化之(二)核范数与规则项参数选择 zouxy09@qq.com http://blog.csdn.net/zouxy09 上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮 ...

  8. paper 126:[转载] 机器学习中的范数规则化之(一)L0、L1与L2范数

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  9. 机器学习中的范数规则化之(一)L0、L1与L2范数

    L1正则会产生稀疏解,让很多无用的特征的系数变为0,只留下一些有用的特征 L2正则不让某些特征的系数变为0,即不产生稀疏解,只让他们接近于0.即L2正则倾向于让权重w变小.见第二篇的推导. 所以,样本 ...

随机推荐

  1. 将find过滤添加到数组

    array=($(find . -name "*.txt"))for i in "${array[@]}"; do echo $i; done

  2. idea 插件推荐 & 代码样式安装

    部分链接打不开的可能需要梯子, 部分插件我懒得截图了,麻烦 ---------------------------------------header------------------------- ...

  3. URL链接后面的参数解析,与decode编码解码;页面刷新回到顶部jquery

    function request() { var urlStr = location.search; ) { theRequest = []; return; } urlStr = urlStr.su ...

  4. 【cookie】【浏览器】各大浏览器对cookie的限制

  5. LeetCode(103) Binary Tree Zigzag Level Order Traversal

    题目 Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left ...

  6. PAT Basic 1066

    1066 图像过滤 图像过滤是把图像中不重要的像素都染成背景色,使得重要部分被凸显出来.现给定一幅黑白图像,要求你将灰度值位于某指定区间内的所有像素颜色都用一种指定的颜色替换. 输入格式: 输入在第一 ...

  7. 解决php7.3 configure: error: off_t undefined

    //解决该问题:php7.3 configure: error: off_t undefined; check your library configuration # 添加搜索路径到配置文件echo ...

  8. Python 输出命令行进度条

    在使用 pip 安装时,你会发现有下载进度条,我们也可以借助开源的第三方库来实现这个功能,在项目输出时增加一些可视化效果. 一个简单易用的第三方库是:progress 作者提供了动图很直观地展现了实现 ...

  9. jsonp实现跨域访问json数据

    前台js function init() { $.ajax({ url: 'http://localhost:8012/index.json', dataType: "jsonp" ...

  10. 大数据学习——本地安装redis

    下载安装包 https://github.com/MicrosoftArchive/redis 下载后解压 运行cmd 然后到redis路径 运行命令: redis-server redis.wind ...