课时6 线性分类器损失函数与最优化(上)

多类SVM损失:这是一个两分类支持向量机的泛化

SVM损失计算了所有不正确的例子,将所有不正确的类别的评分,与正确类别的评分之差加1,将得到的数值与0作比较,取两者中的最大值。然后将所有的数值进行求和。用平均值来代替不会影响结果。

这些评分都是无标度的,因为我们可以随便选择W,让它成比例地增大或者减小,然后分数也随之成比例地变化。所以分数的大小和它的量度的选择紧密相关,将安全系数的值设为1在某种程度上来说只是一个随意的选择。

在实际的数据集中使用这个损失函数,可能会有一些我们不太希望的性质。我们现在有整个W空间,并且根据这个损失函数他们的工作方式都是相同的,我们希望对于所有W而言有一部分的W是有优先权的,这一优先权基于我们希望W拥有的特点,不用去管数据集,只关心使W达到最优的特点。

正则化

可以用它来处理我们的损失函数,加上了一项正则化函数R(W),而R(W)衡量了W的好坏,我们不仅仅想要数据拟合得更好,也希望能优化W,所以我们找到了一些方法来证明他们是确实有效的,事实上,正则化是为了权衡你的训练损失和你用于测试集的泛化损失,所以正则化是一系列通过损失来使目标相加的技术。

L2正则化要做的就是尽可能地展开w权重,以便于考虑到所有输入特征或者说所有的像素,并且尽可能地利用这些维度

为什么要用正则化?

假设你有多组权重可以得到相同分数,我们想以某种方式选出最好的。

Softmax分类器

也就是一般化的逻辑斯蒂回归,他是在这些分数的基础上表明损失的一种不同的函数形式,这种解释就是说他是在这些分数基础上实现的,这些分数不是随机的,也不是表明某种边界。从一个问题出发,我们有特定的解读方式,这种方式有一定的规则,这些分数是对应不同类未经标准化的对数概率。

斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时6的更多相关文章

  1. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时3

    课时3 计算机视觉历史回顾与介绍下 ImageNet有5000万张图片,全部都是人工清洗过得,标注了超过2万个分类. CS231n将聚焦于视觉识别问题,图像分类关注的是大图整体:物体检测告诉你东西具体 ...

  2. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时1

    课时1 计算机视觉历史回顾与介绍上 CS231n:这一一门关于计算机视觉的课程,基于一种专用的模型架构,叫做神经网络(更细一点说,是卷积神经网络CNN).计算机视觉是人工智能领域中发展最为迅猛的一个分 ...

  3. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时26&&27

    课时26 图像分割与注意力模型(上) 语义分割:我们有输入图像和固定的几个图像分类,任务是我们想要输入一个图像,然后我们要标记每个像素所属的标签为固定数据类中的一个 使用卷积神经,网络为每个小区块进行 ...

  4. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时24&&25

    课时24 深度学习开源库使用介绍(上) Caffe 被用于重新实现AlexNet,然后用AlexNet的特征来解决其他事情 用C++书写的,可以去GitHub上面读取源代码 主要四个类: Blob可以 ...

  5. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时8&&9

    课时8 反向传播与神经网络初步(上) 反向传播在运算连路中,这是一种通过链式法则来进行递推的计算过程,这个链路中的每一个中间变量都会对最终的损失函数产生影响. 链式法则通常包含两部分,局部梯度和后一层 ...

  6. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时12&&13

    课时12 神经网络训练细节part2(上) 训练神经网络是由四步过程组成,你有一个完整的数据集图像和标签,从数据集中取出一小批样本,我们通过网络做前向传播得到损失,告诉我们目前分类效果怎么样.然后我们 ...

  7. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时11

    课时11 神经网络训练细节part1(下) 2010年,Glorot等人写的论文,我们称之为Xavier初始化,他们关注了神经元的方差表达式.他们推荐一种初始化方式,那就是对每个神经元的输入进行开根号 ...

  8. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时10

    课时10 神经网络训练细节part1(上) 没有大量的数据也不会有太多影响,只需要找一个经过预训练的卷积神经网络然后进行调整 从数据集中抽样一小批数据, 将数据运入卷积神经网络中来计算损失值 通过反向 ...

  9. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时7

    课时7 线性分类器损失函数与最优化(下) 我们为什么要最大化对数概率而非直接最大化概率? 你在做逻辑斯蒂回归时,如果你只是想要最大化概率,那你使用log是无意义的.因为log函数是单调函数,最大化概率 ...

  10. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时14&&15

    课时14 卷积神经网络详解(上) CNN处理的是一些数据块,在这之间有很多层,一系列的层将输入数据变换为输出数据,所以完成操作的中间量不仅是NN时候讲的那些向量,而是立体结构,有宽,高和深度,在整个计 ...

随机推荐

  1. .net core mvc启动顺序以及主要部件1

    原文:.net core mvc启动顺序以及主要部件1 首先我是新人一个写这些东西也是为了增加记忆,有不对的地方请多多指教. 说回正题,打开Program.cs文件,看到在有个CrateWebHost ...

  2. IOS开发 二维码功能的实现

    原帖地址:http://yul100887.blog.163.com/blog/static/20033613520121020611299/ 如今二维码随处可见,无论是实物商品还是各种礼券都少不了二 ...

  3. VisualSVN Server 导入已存在的库

    http://blog.csdn.net/lidatgb/article/details/7984220         早些时候建立过一个SVN Server的库,后来觉得库的名字太长了,随意换了一 ...

  4. Cocos2d-x 3.0 简捷的物理引擎

    Cocos2d-x 3.0 开发(九)使用Physicals取代Box2D和chipmunk http://www.cocos2d-x.org/docs/manual/framework/native ...

  5. 如何在List集合中去重

    众所周知List集合中的元素是有序的,但是List中的元素同样是可以重复的,那么我们应该怎么在List集合中去重呢? 方法一: 对于方法一而言,这也许是一个小窍门.利用的是Set集合中不允许出现重复的 ...

  6. 提高系统性能——对SQL语句优化的思考

    软件在研发的过程中自始至终都在留意着系统的可扩展性.但与此同一时候也在关注着系统的性能,SQL语句作为系统性能的一环不容忽视.从今天開始结合开发的经验,谈一下我对SQL语句优化的理解和认知: 1.在联 ...

  7. bash仅仅读的环境变量

    环境变量名 变量的用途 $0 程序的名字 $1~$9 命令參数1~9的值 $* 全部命令行參数的值 $@ 全部命令行參数的值.假设$@被""包含.即"$@",这 ...

  8. cocos2d-x 3.0 touch事件官方解释

    官方解释 http://www.cocos2d-x.org/docs/manual/framework/native/input/event-dispatcher/zh#_1

  9. 作为iOS程序员,最核心的60%能力有哪些?

    作为iOS程序员,最核心的60%能力有哪些?   一个合格的iOS程序员需要掌握多少核心技能?你和专业的开发工程师的差距有多大?你现在的水平能开发一个功能完整性能高效的iOS APP吗?一起来看看下面 ...

  10. Mac中Maven的安装步骤

    1.下载Maven,并解压到某个目录. 2.打开terminal,输入一下命令. open .bash_profile; 3.在bash_profile中,编辑文件  内容如下. 4.保存bash_p ...