【BZOJ2339】卡农(递推,容斥)

题面

BZOJ

题解

先简化一下题意:

在\([1,2^n-1]\)中选择不重复的\(m\)个数,使得他们异或和为\(0\)的方案数。

我们设\(f[i]\)表示选择\(i\)个数异或和为\(0\)的方案数。

直接算是很麻烦的,所以我们反过来,总数减去不合法的。

因为确定了前\(i-1\)个数最后一个数就已经知道了。

所以总方案数是\(A_{2^n-1}^{i-1}\),不合法的有两种,一种是选择了\(0\),一种是有重复。

选择了\(0\),意味着前\(i-1\)个数的异或和为\(0\),所以方案数是\(f[i-1]\)种。

有重复,我们枚举哪个数重复了,那么剩下的\(i-2\)个数的异或和仍然为\(0\)

所以方案数是\(f[i-2]\times (2^n-1-(i-2))\),题目没有考虑顺序,但是我们计算的时候先考虑了顺序,所以这里的方案数还需要考虑在哪个位置,也就是再乘上一个\((i-1)\)

所以$$f[i]=A_{2n-1}{i-1}-f[i-1]-(i-1)\times f[i-2]\times(2^n-1-(i-2))$$

最终的答案再把顺序的问题处理一下就好了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 100000007
#define MAX 1000100
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int jv=1,A[MAX],n,m,p,f[MAX];
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int main()
{
n=read();m=read();p=fpow(2,n);f[0]=A[0]=1;f[1]=0;
for(int i=1;i<=m;++i)jv=1ll*jv*i%MOD;jv=fpow(jv,MOD-2);
for(int i=1;i<=m;++i)A[i]=1ll*A[i-1]*(p-i+MOD)%MOD;
for(int i=2;i<=m;++i)f[i]=((A[i-1]-f[i-1]+MOD)%MOD-1ll*f[i-2]*(i-1)%MOD*(p-1-(i-2)+MOD)%MOD+MOD)%MOD;
printf("%lld\n",1ll*jv*f[m]%MOD);
return 0;
}

【BZOJ2339】卡农(递推,容斥)的更多相关文章

  1. BZOJ2339[HNOI2011]卡农——递推+组合数

    题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...

  2. bzoj1042硬币购物——递推+容斥

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1042 递推,再用容斥原理减掉多余的,加上多减的……(dfs)即可. 代码如下: #includ ...

  3. BZOJ3589 动态树[树剖/暴力/容斥]

    操作0,显然直接线段树解决. 操作1,瓶颈在于重叠的链只算一次.在线段树上来看,如果一个区间被覆盖了,那么只算这个区间,子树里面也就不管了. 考虑对节点打标记来表示是否覆盖.但是,如果统一打完之后,并 ...

  4. 【BZOJ2339】[HNOI2011]卡农 组合数+容斥

    [BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...

  5. bzoj2339[HNOI2011]卡农 dp+容斥

    2339: [HNOI2011]卡农 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 842  Solved: 510[Submit][Status][ ...

  6. BZOJ.2339.[HNOI2011]卡农(思路 DP 组合 容斥)

    题目链接 \(Description\) 有\(n\)个数,用其中的某些数构成集合,求构造出\(m\)个互不相同且非空的集合(\(m\)个集合无序),并满足每个数总共出现的次数为偶数的方案数. \(S ...

  7. 【bzoj 2339】[HNOI2011]卡农(数论--排列组合+逆元+递推)

    题意:从编号为 1~N 的音阶中可选任意个数组成一个音乐片段,再集合组成音乐篇章.要求一个音乐篇章中的片段不可重复,都不为空,且出现的音符的次数都是偶数个.问组成 M 个片段的音乐篇章有多少种.答案取 ...

  8. [BZOJ2339][HNOI2011]卡农

    [BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...

  9. BZOJ2339 HNOI2011卡农(动态规划+组合数学)

    考虑有序选择各子集,最后除以m!即可.设f[i]为选i个子集的合法方案数. 对f[i]考虑容斥,先只满足所有元素出现次数为偶数.确定前i-1个子集后第i个子集是确定的,那么方案数为A(2n-1,i-1 ...

随机推荐

  1. char和String 在jsp java代码中与jstl代码中的区别

    在 jsp java代码中 '0' ,这种代表char 在jstl中 '0' 会被解释为 String  所以也可以用  .equals  方法

  2. python全栈开发-前方高能-函数

    python_day_9 一.今日主要内容 函数: 函数:对功能的封装 语法: def 函数名(形参): 函数体 函数名(实参) 函数名:命名规则和变量一样 函数的返回值: return, 函数执行完 ...

  3. Git操作指令

    1.创建版本库 git init 2.把工作区修改过的文件添加到版本库暂存区,点号表示当前目录下所有文件; git add .#查看仓库状态git status 3.把版本库暂存区的文件提交到当前分支 ...

  4. jupyter通过notedown使用markdown

    0 Problem 最近看了下李沐老师的mxnet教程,在使用jupyter的时候打开教程发现全是markdown源文,没有展示markdown格式的文字. 1 Reason 源代码是用markdow ...

  5. PIL包中图像的mode参数

    在这里的第一篇. 这篇的是为了说明PIL库中图像的mode参数. 我做的事情是: 在本地找了jpg的图,convert为不同mode,将不同的图截取做了个脑图,有个直观的感觉吧. 把不同mode的图通 ...

  6. python基础知识-03-字符串

    python其他知识目录 1.for循环遍历字符串中单个字符 s_str="mcw" for i in s_str: print(i) -----------结果: m c w 2 ...

  7. 关于《数据结构》课本KMP算法的理解

    数据结构课上讲的KMP算法和我在ACM中学习的KMP算法是有区别的,这里我对课本上的KMP算法给出我的一些想法. 原理和之前的KMP是一样的https://www.cnblogs.com/wkfvaw ...

  8. win10与linux双系统切换时间不一致的调整

    按照Linux系统之后再切换回到win10后,我发现win10的时间不再是北京时间,而是比北京时间多了整整8小时,之后百度找到了问题来源,这里给出解决方法. 如果安装了 Windows 和 Linux ...

  9. CS小分队第二阶段冲刺站立会议(5月28日)

    昨日成果:昨天对我们的软件的主界面进行了思考,考虑到许多人建议我们团队添加可以自主增加软件快捷键的功能,我对这一想法的可行性和项目总体策划进行评估分析后,决定正式实施:已经完成从电脑上添加文件在我们的 ...

  10. Nodejs学习笔记(二)--- 操作MongoDB数据库

    最近看了一些关于mongodb的文章,然后就想知道nodeJS是怎么连接的所以我就尝试去了解了一波(这个菜鸟驿站这个网站还不错,虽然知识文档不是最新的,但是还是蛮好的: 顺便官网地址是这个哦:http ...