【loj6059】Sum
Solution
看过去第一反应是。。大力数位dp!然后看了一眼数据范围。。。
但是这没有什么关系!注意到我们不需要考虑前导零了,可以直接快乐dp
状态还是能继续用的,记\(f[i][j][k]\)表示从左往右数的前\(i\)位,(假装后面没有数位的情况下)模\(p\)余\(j\),数字和为\(k\)
然后。。\(n\)特别大所以我们考虑。。倍增求解,考虑从\(\lfloor\frac{i}{2}\rfloor\)转移到\(i\):
\]
这个\(w\)的话就是。。\(\lfloor\frac{i}{2}\rfloor\)
但是如果说\(i\)是奇数怎么办呢?其实只要在这样转移完了之后再暴力枚举一下最高位是啥就好了(现在是相当于得到了一个\(i-1\)位的数嘛)
然后发现因为\(p\)和\(m\)都比较小,所以我们可以直接枚举,而第二维的那个\(f[][x][j]*f[][y][k]\rightarrow f[][x+y][]\)的是一个卷积的形式,我们可以用NTT来优化
具体的话其实感觉跟这题的处理有点像【Portal -->Lcm】,也是我们先将\(f[i][x]\)DFT(NTT)一下之后就可以随便搞事了,也就是相当于第二维和第三维在某种意义上独立了,然后我们可以将转移分开处理(先搞第二维的转移,再暴力枚举第三维的转移)
至于倍增的话。。递归就好了,边界的话就是\(i=0\)的情况
因为中间要快乐NTT所以一定要记得相关数组清空
代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int MOD=998244353,N=3010,M=3010,NT=N*4,TOP=11,G=3;
int f[N][M],g[N][M];
int n,m,p,ans;
int mul(int x,int y){return 1LL*x*y%MOD;}
int add(int x,int y){return (1LL*x+y)%MOD;}
int ksm(int x,int y){
int ret=1,base=x;
for (;y;y>>=1,base=mul(base,base))
if (y&1) ret=mul(ret,base);
return ret;
}
namespace NTT{/*{{{*/
int A[NT],B[NT],W[NT][2],rev[NT];
int len,invlen,invg;
void get_len(int n,int m){
for (int i=0;i<len;++i) A[i]=B[i]=0;
int bit=0;
for (len=1;len<=n+m;len<<=1,++bit);
rev[0]=0;
for (int i=1;i<len;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
invlen=ksm(len,MOD-2);
}
void init(int n){
invg=ksm(G,MOD-2);
for (int i=1;i<=TOP;++i){
W[1<<i][0]=ksm(G,(MOD-1)/(1<<i));
W[1<<i][1]=ksm(invg,(MOD-1)/(1<<i));
}
get_len(n,n);
}
void ntt(int *a,int op){
int w,w_n,u,v;
for (int i=0;i<len;++i) if (rev[i]>i) swap(a[i],a[rev[i]]);
for (int step=2;step<=len;step<<=1){
w_n=W[step][op==-1];
for (int st=0;st<len;st+=step){
w=1;
for (int i=0;i<(step>>1);++i){
v=mul(a[st+i+(step>>1)],w);
u=a[st+i];
a[st+i]=add(u,v);
a[st+i+(step>>1)]=add(u,MOD-v);
w=mul(w,w_n);
}
}
}
if (op==1) return;
for (int i=0;i<len;++i) a[i]=mul(a[i],invlen);
}
}/*}}}*/
int work(int n){
if (!n) return 1;
int mi=work(n>>1);
for (int i=0;i<p;++i)
NTT::ntt(g[i],1);
for (int i=0;i<p;++i)
for (int j=0;j<p;++j)
for (int k=0;k<NTT::len;++k)
f[(i+j*mi%p)%p][k]=add(f[(i+j*mi%p)%p][k],mul(g[i][k],g[j][k]));
for (int i=0;i<p;++i)
for (int j=0;j<NTT::len;++j)
g[i][j]=0;
for (int i=0;i<p;++i){
NTT::ntt(f[i],-1);
for (int j=0;j<m;++j) g[i][j]=f[i][j];
for (int j=0;j<NTT::len;++j) f[i][j]=0;
}
mi=mi*mi%p;
if (n&1){
for (int i=0;i<p;++i)
for (int x=0;x<10;++x)
for (int j=0;j+x<m;++j)
f[(i+x*mi%p)%p][j+x]=add(f[(i+x*mi%p)%p][j+x],g[i][j]);
for (int i=0;i<p;++i)
for (int j=0;j<m;++j)
g[i][j]=f[i][j],f[i][j]=0;
mi=mi*10%p;
}
return mi;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d%d%d",&n,&p,&m);
g[0][0]=1; ++m;
NTT::init(m);
work(n);
ans=0;
for (int i=0;i<m;++i){
ans=add(ans,g[0][i]);
printf("%d ",ans);
}
}
【loj6059】Sum的更多相关文章
- 【BZOJ3944】Sum(杜教筛)
[BZOJ3944]Sum(杜教筛) 题面 求\[\sum_{i=1}^n\mu(i)和\sum_{i=1}^n\phi(i)\] 范围:\(n<2^{31}\) 令\[S(n)=\sum_{i ...
- 【CF914G】Sum the Fibonacci 快速??变换模板
[CF914G]Sum the Fibonacci 题解:给你一个长度为n的数组s.定义五元组(a,b,c,d,e)是合法的当且仅当: 1. $1\le a,b,c,d,e\le n$2. $(s_a ...
- 【BZOJ4262】Sum 单调栈+线段树
[BZOJ4262]Sum Description Input 第一行一个数 t,表示询问组数. 第一行一个数 t,表示询问组数. 接下来 t 行,每行四个数 l_1, r_1, l_2, r_2. ...
- 【POJ1707】【伯努利数】Sum of powers
Description A young schoolboy would like to calculate the sum for some fixed natural k and different ...
- 【leetcode】Sum Root to Leaf Numbers(hard)
Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...
- 【LeetCode】Sum of Two Integers
问题描述: Calculate the sum of two integers a and b, but you are not allowed to use the operator + and - ...
- 【POJ2739】Sum of Consecutive Prime Numbers
简单的素数打表,然后枚举.开始没注意n读到0结束,TLE了回..下次再认真点.A过后讨论里面有个暴力打表过的,给跪了! #include <iostream> #include <c ...
- 【LeetCode】Sum Root to Leaf Numbers
题目 Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a num ...
- 【leetcode74】Sum of Two Integers(不用+,-求两数之和)
题目描述: 不用+,-求两个数的和 原文描述: Calculate the sum of two integers a and b, but you are not allowed to use th ...
随机推荐
- 关于Eclipse在servlet中连接数据库时出现驱动加载失败的解决
问题:在队友发来的项目中想将他获取到的数据通过数据库储存,出现驱动加载失败问题 解决:首先百度了下相关情况,大多数都是说下载mysql-connector-java-5.1.39-bin.jar包,然 ...
- Http协议工作特点和工作原理笔记
工作特点: (1)B/S结构(Browser/Server,浏览器/服务器模式) (2)无状态 (3)简单快速.可使用超文本传输协议.灵活运行传输各种类型 工作原理: 客户端发送请求浏览器 -> ...
- Git生成SSH密钥
git config --global user.name "yangjianliang"配置用户名 git config --global user.email "52 ...
- eclipse Unable to read repository 花了三天时间,吐血解决
安装eclipse 的 swt examples插件时出现这个错误 查了三天,发现就是网速太慢,导致下载一半下不动出错,原因大概是因为国外吧 于是想看看能不能通过离线安装插件包的方式 问题来了,插件包 ...
- Vue学习计划基础笔记(四) - 事件处理
事件处理 目标: 熟练掌握事件监听的方式,熟悉事件处理方式以及各类事件修饰符 理解在html中监听事件的意义 监听事件(v-on) 类似普通的on,例如v-on:click或@click就相当于普通的 ...
- Siki_Unity_3-8_Lua编程(未完)
Unity 3-8 Lua编程 任务1&2&3:前言 课程内容: Lua从入门到掌握 为之后的xLua和其他热更新方案打下基础 任务4:Lua简介 Lua是轻量小巧的脚本语言--无需编 ...
- java基础学习总结--开篇
春去秋来,转眼间,参加工作快2年了.本来应该是3年,然在毕业的第一年,有试着从事过其他行业.最终结果是失败了.2016年又回来从事软件开发,转眼即将2年,在这期间有许多收获,当然也有彷徨迷茫的时候,人 ...
- 阿里巴巴将在美国推出电子商务网站11 Main
新浪科技讯 北京时间2月11日晚间消息,阿里巴巴集团周二向路透社证实,阿里巴巴将通过旗下子公司Vendio和Auctiva在美国推出一个电子商务网站. 该网站的名称为“11 Main”(11main. ...
- Python基础知识-06-集合内存布尔False
python其他知识目录 1.判断一个字符串中是否有敏感字符? #str: m_str="我叫魔降风云变" if "魔" in m_str: #判断指定字符是否 ...
- php异步学习(1)
1.为啥PHP需要异步操作? 一般来说PHP适用的场合是web页面展示等耗时比较短的任务,如果对于比较花时间的操作如resize图片.大数据导入.批量发送EDM.SMS等,就很容易出现操作超时情况.你 ...