解题:BZOJ 4808 马
以前写过的题,翻出来学习网络流写二分图匹配,因为复杂度更优秀,$Dinic$是$O(sqrt(n)m)$哒~
原点向左部点连流量为$1$的边,左部点向对应右部点连流量为$1$的边,右部点向汇点连流量为$1$的边,然后跑
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int B=,N=,M=,inf=1e9;
const int mov[][]={{,},{,-},{-,},{-,-},{,},{,-},{-,},{-,-}};
int T,n,m,s,t,f,b,t1,t2,rd,num,cnt,tot,ans;
int noww[*M],goal[*M],flow[*M];
int p[N],pp[N],dep[N],que[N];
int bro[B][B],mapp[B][B];
int tonum(int x,int y)
{
return (x-)*m+y;
}
bool check(int x,int y)
{
return x>=&&x<=n&&y>=&&y<=m;
}
void link(int f,int t,int v)
{
noww[++cnt]=p[f],p[f]=cnt;
goal[cnt]=t,flow[cnt]=v;
noww[++cnt]=p[t],p[t]=cnt;
goal[cnt]=f,flow[cnt]=;
}
bool Layering(int st,int ed)
{
for(int i=;i<=num;i++) pp[i]=p[i];
memset(dep,-,sizeof dep);
dep[st]=,que[f=b=]=st;
while(f<=b)
{
int tn=que[f++];
for(int i=p[tn];i;i=noww[i])
if(dep[goal[i]]==-&&flow[i])
dep[goal[i]]=dep[tn]+,que[++b]=goal[i];
}
return ~dep[ed];
}
int Augmenting(int nd,int ed,int mn)
{
if(nd==ed||!mn) return mn;
int tmp=,tep=;
for(int i=pp[nd];i;i=noww[i])
{
pp[nd]=i;
if(dep[goal[i]]==dep[nd]+)
if(tep=Augmenting(goal[i],ed,min(mn,flow[i])))
{
flow[i]-=tep,mn-=tep;
flow[i^]+=tep,tmp+=tep;
if(!mn) break;
}
}
return tmp;
}
void Dinic_Maxflow(int st,int ed)
{
while(Layering(st,ed))
ans+=Augmenting(st,ed,inf);
}
int main ()
{
scanf("%d%d",&n,&m);
cnt=,num=n*m+,tot=n*m,s=n*m+,t=n*m+;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
scanf("%d",&rd);
bro[i][j]=rd,tot-=rd;
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
if(!bro[i][j])
{
if((i^j)&)
{
link(s,tonum(i,j),);
for(int k=;k<;k++)
{
t1=i+mov[k][],t2=j+mov[k][];
if(check(t1,t2)&&!bro[t1][t2])
link(tonum(i,j),tonum(t1,t2),);
}
}
else link(tonum(i,j),t,);
}
Dinic_Maxflow(s,t);
printf("%d",tot-ans);
return ;
}
解题:BZOJ 4808 马的更多相关文章
- BZOJ 4808: 马(二分图最大点独立集)
http://www.lydsy.com/JudgeOnline/problem.php?id=4808 题意: 思路: 这图中的两个马只能选一个,二选一,很像二分图吧,对能互吃的两个棋子连线,在所选 ...
- BZOJ 4808 马 二分图最大独立集
题目应该就是最大独立集了吧,没什么了,平面图求最大独立集需要/2的, WQH说加直接+双向边考研过,结果真的过了,应该是匈牙利算法寻找的 时候更加快了吧.(方便找边) #include<cstd ...
- bzoj 4808: 马【匈牙利算法】
网格图黑白染色,然后能互相攻击到的点之间连边,跑匈牙利算法最大匹配,答案是好点个数-最大匹配(最大独立集) 注意pao的时候只从一种颜色的格子统计即可 #include<iostream> ...
- bzoj3175: [Tjoi2013]攻击装置&&4808: 马
终于知道为啥网络流这么受欢迎了. 其实就是构个图模板一下的事儿,比较好打是吧. 然后这题网络流黑白染色(其实感觉上匈牙利更加直接好想啊,但是实际上黑白染色给人感觉就是二分图) st连白而ed连黑,流量 ...
- BZOJ 4808 二分图最大独立集
思路: 棋盘是个二分图 那就把一个可以走的白点 向所有可以走的黑点连边 跑一个最大匹配 (匹配上了就代表这两个点不能共存) 最大独立集=sum-最大匹配 //By SiriusRen #incl ...
- BZOJ 4806 - 4809 象棋四题
4806: 炮 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 103 Solved: 72[Submit][Status][Discuss] Des ...
- NOI 2015 荷马史诗【BZOJ 4198】k叉Huffman树
抱歉因为NOIP集训,好长时间没再写题解了. NOI 2015也就只有这道题一看就能懂了-- 4198: [Noi2015]荷马史诗 Time Limit: 10 Sec Memory Limit: ...
- BZOJ 1051 最受欢迎的牛 解题报告
题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4438 Solved: 2353[S ...
- BZOJ 3173 [Tjoi2013] 最长上升子序列 解题报告
这个题感觉比较简单,但却比较容易想残.. 我不会用树状数组求这个原排列,于是我只好用线段树...毕竟 Gromah 果弱马. 我们可以直接依次求出原排列的元素,每次找到最小并且最靠右的那个元素,假设这 ...
随机推荐
- JAVA验证码识别:基于jTessBoxEditorFX和Tesseract-OCR训练样本
JAVA验证识别:基于jTessBoxEditorFX和Tesseract-OCR训练样本 工具准备: jTessBoxEditorFX下载:https://github.com/nguyenq/jT ...
- python环境通过selenium实现自动化web登陆及终端邀请
自动化主要的就是识别对象,可以在网上搜到各种各样的方法,自行百度.下面仅附上一个简单的例子. 环境搭建参考如下链接: https://www.cnblogs.com/hepeilinnow/p/101 ...
- 3.10-通过requests、BeautifulSoup、webbrowser模块的相关方法,爬取网页数据示例程序(一)
import requests,bs4res=requests.get('https://www.hao123.com/')print('res对象的类型:',type(res))res.raise_ ...
- 数据挖掘学习笔记——kaggle 数据预处理
预处理 1. 删除缺失值 a. 删除行即样本(对于样本如果输出变量存在缺失的则直接删除该行,因为无法用该样本训练) b. 删除列,即特征(采用这种删除方式,应保证训练集和验证集都应当删除相同的特征) ...
- python sys模块使用详情
python常用模块目录 sys模块提供了一系列有关Python运行环境的变量和函数.1.sys.argv可以用sys.argv获取当前正在执行的命令行参数的参数列表(list).变量解释sys.ar ...
- 效能检测 psp
1.本周psp: 2.本周进度条: 3.累计进度图(折线图) 4.psp饼状图:
- 软件工程-东北师大站-第四次作业PSP
1.本周PSP 2.本周进度条 3.本周累计进度图 代码累计折线图 博文字数累计折线图 4.本周PSP饼状图
- 20172330 2017-2018-1 《Java程序设计》第十周学习总结
20172330 2017-2018-1 <程序设计与数据结构>第十周学习总结 教材学习内容总结 本周的学习内容为集合 集合 对象具有定义良好的接口,从而成为一种实现集合的完善体制. 动态 ...
- P4环境搭建
P4环境搭建 执行仓库中所有脚本,即可即可安装所有依赖项. GitHub链接 脚本执行顺序:deps,p4c-bm,bmv2,p4c
- HDU 2012 FZU 1756关于素数的一些水题
HDU 2012 素数判定 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...