P2261 [CQOI2007]余数求和

题意:

求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\)

数据范围:

\(1 \le n,k \le 10^9\)


\(G(n,k)\)

\(=\sum_{i=1}^n k-i*\lfloor \frac{k}{i} \rfloor\)

\(=n*k-\sum_{i=1}^n i*\lfloor \frac{k}{i} \rfloor\)

显然,\(\lfloor \frac{k}{i} \rfloor\)的分布可能会有重复。

根据除法分块(别在意它只是一个名字),这些值不重复的个数大约是\(\sqrt k\)

我们只需要统计每一块的值即可,注意到值在区间上的出现是单调递增的。

如果我们得到某一块最开始的下标\(l\)(可以从上一块的\(r\)得到),如何推得这一块的\(r\)呢?

其实很简单,\(\frac{k}{l}\)的余数是最大的,而\(\frac{k}{r}\)的余数显然得为0

设\(t=\frac{k}{l}\),则\(r=\frac{k}{t}\)

加上不能越界的判断,完整的即为

\(if \ t==0\)

\(r=n\)

\(else\)

\(r=min(n,\frac{k}{t})\)

对每一块直接统计即可


Code:

#include <cstdio>
#define ll long long
ll min(ll x,ll y){return x<y?x:y;}
ll k,ans,n,l,r,t;
int main()
{
scanf("%lld%lld",&n,&k);
ans=n*k;
l=1;
while(r!=n)
{
ll t=k/l;
if(!t) r=n;
else r=min(n,k/t);
ans-=(r+1-l)*(l+r)*t/2;
l=r+1;
}
printf("%lld\n",ans);
return 0;
}

2018.7.23

洛谷 P2261 [CQOI2007]余数求和 解题报告的更多相关文章

  1. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  2. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  3. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  4. 洛谷 P2261 [CQOI2007]余数求和

    洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...

  5. 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块

    参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...

  6. 【洛谷P2261】余数求和

    题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...

  7. 洛谷 P4091 [HEOI2016/TJOI2016]求和 解题报告

    P4091 [HEOI2016/TJOI2016]求和 题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: \[ f(n)=\sum_{i=0}^n\ ...

  8. 洛谷 2261 [CQOI2007]余数求和

    题目戳这里 一句话题意 求 \(\sum_{i=1}^{n} (k ~~\texttt{mod} ~~i)\) Solution 30分做法: 说实话并不知道怎么办. 60分做法: 很明显直接一遍o( ...

  9. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

随机推荐

  1. win10 Docker Toolbox 默认路径不能写问题

    2018-8-30 这几天正学习docker,win10系统家庭版,未升级成专业版,只能安装Docker Toolbox来练习, 安装好后准备做个镜像,默认路径新建目录却提示不允许创建 由于Docke ...

  2. 一、初识 Django

    一.引子 Django最初设计用于具有快速开发需求的新闻类站点,目的是要实现简单快捷的网站开发! 从好的方面来看,Web 开发激动人心且富于创造性:从另一面来看,它却是份繁琐而令人生厌的工作.通过减少 ...

  3. Mybatis利用拦截器做统一分页

    mybatis利用拦截器做统一分页 查询传递Page参数,或者传递继承Page的对象参数.拦截器查询记录之后,通过改造查询sql获取总记录数.赋值Page对象,返回. 示例项目:https://git ...

  4. js判断PC端 移动端 并跳转到对应页面

    一.PC端跳转到移动端 html页面: <script>var webroot="/",catid="{$catid}",murl="m/ ...

  5. Mybatis中的几种注解映射

    1.  普通映射 2. @Select("select * from mybatis_Student where id=#{id}") 3. public Student getS ...

  6. hdu - 6281,2018CCPC湖南全国邀请赛F题,快排

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6281 题意: 根据已给出的式子,进行排序,然后输出排完序后原先的下表. 题解:用结构体保存,在用结构体 ...

  7. mysql group by 取第一条

    select * from table where id in (select max(id) from table group by sku) 说明:id是自增序列,sku是表中的一个字段

  8. Python模块random使用详情

    python常用模块目录 1.random.random()#用于生成一个0到1的随机浮点数:0<= n < 1.0 import random mcw = random.random() ...

  9. loadrunner socket协议问题归纳(2)

    编写步骤 1.建立与服务端的连接 rc=lrs_create_socket(“socket0”,”TCP”,”LocalHost=0”,”RemoteHost=127.0.0.1:8808”,LrsL ...

  10. 使用Node.js 搭建http服务器 http-server 模块

    1. 安装 http-server 模块 npm install http-server -g   全局安装 2.在需要的文件夹   启动 http-server  默认的端口是8080    可以使 ...