HDU4767_Sum Of Gcd
通过一个题目,学到了很多。
题意为给你n个数,每次询问i,j,答案为i,j间任取两数所有的取法gcd的和。
假设我们当前要看看这个区间有多少个数的gcd为x,最最原始的想法都是查询这个区间有多少个数为x的倍数。然后任取两个%&*¥#@!,但是有的gcd不是x,而是x的倍数。
这个问题这样来考虑,其实思想上是莫比乌斯反演。
假设当前我们有x个数是要求的现在的数y的倍数,那么所有的y的约数也肯定包含了这x个数。
所以我们可以当前要乘以的这个数不是x,而是一个f[x],显然x的所有的约数的函数和为x,这样就保证了求解的正确性。
同时想到了这里就会发现,所求的函数值与原题给的数据和各个数字的位置关系是没有关系的了,可以预处理。
最后看过各种,终于学到了,这个函数值就是欧拉函数值。 神坑啊。
还有就是这里的区间求解有一个小小的技巧。
区间分块处理,什么意思呢?
把区间排序,每次按照区间左端点所在的区进行排序,如果在同一区的话,就按右端点来排序,这样就保证了更新的复杂度为n*sqrt(n)。
真心受教了,不过鄙人还是觉得这种做法不太严谨,感觉如果是这个题目有极限数据的话,还是会T,不过确实比我想过的所有其他的想法都要优。
数论又一次被虐了。。。。。。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#include <cmath>
#define maxn 20002
typedef long long ll;
using namespace std; vector<int> g[maxn];
ll sum[maxn],ans;
int num[maxn],a[maxn],phi[maxn],t,n,m,Q,cas=,curl,curr; struct query{
int li,ri,pos;
}q[maxn]; bool cmp(query q1,query q2)
{
int l1=q1.li/m,l2=q2.li/m;
if (l1==l2) return q1.ri<q2.ri;
return q1.li<q2.li;
} void init()
{
for (int i=; i<maxn; i++)
for (int j=i; j<maxn; j+=i) g[j].push_back(i);
phi[]=;
for (int i=; i<maxn; i++)
{
if (phi[i]==) phi[i]=i;
else continue;
for (int j=i; j<maxn; j+=i)
{
if (phi[j]==) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
} void add(int x,int tag)
{
for (unsigned i=; i<g[x].size(); i++)
{
int k=g[x][i];
if (tag==-) num[k]--;
ans+=(ll)tag*num[k]*phi[k];
if (tag== ) num[k]++;
}
} void _process()
{
ans=;
memset(num,,sizeof num);
curl=q[].li,curr=q[].ri;
for (int i=curl; i<=curr; i++) add(a[i],);
sum[q[].pos]=ans;
for (int i=; i<=Q; i++)
{
while (curl<q[i].li) add(a[curl],-),curl++;
while (curr>q[i].ri) add(a[curr],-),curr--;
while (curl>q[i].li) add(a[--curl], );
while (curr<q[i].ri) add(a[++curr], );
sum[q[i].pos]=ans;
}
} int main()
{
init();
scanf("%d",&t);
while (t--)
{
scanf("%d",&n); m=(int)sqrt(n+0.5);
for (int i=; i<=n; i++) scanf("%d",&a[i]);
scanf("%d",&Q);
for (int i=; i<=Q; i++) scanf("%d%d",&q[i].li,&q[i].ri),q[i].pos=i;
sort(q+,q++Q,cmp);
_process();
printf("Case #%d:\n",++cas);
for (int i=; i<=Q; i++) printf("%I64d\n",sum[i]);
}
return ;
}
HDU4767_Sum Of Gcd的更多相关文章
- Objective-C三种定时器CADisplayLink / NSTimer / GCD的使用
OC中的三种定时器:CADisplayLink.NSTimer.GCD 我们先来看看CADiskplayLink, 点进头文件里面看看, 用注释来说明下 @interface CADisplayLin ...
- iOS 多线程之GCD的使用
在iOS开发中,遇到耗时操作,我们经常用到多线程技术.Grand Central Dispatch (GCD)是Apple开发的一个多核编程的解决方法,只需定义想要执行的任务,然后添加到适当的调度队列 ...
- 【swift】BlockOperation和GCD实用代码块
//BlockOperation // // ViewController.swift import UIKit class ViewController: UIViewController { @I ...
- 修改版: 小伙,多线程(GCD)看我就够了,骗你没好处!
多线程(英语:multithreading),是指从软件或者硬件上实现多个线程并发执行的技术.具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程,进而提升整体处理性能.具有这种能力的系 ...
- GCD的相关函数使用
GCD 是iOS多线程实现方案之一,非常常用 英文翻译过来就是伟大的中枢调度器,也有人戏称为是牛逼的中枢调度器 是苹果公司为多核的并行运算提出的解决方案 1.一次性函数 dispatch_once 顾 ...
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
随机推荐
- 20155307 《Java程序设计》课堂实践项目MyOD
一开始没理解老师的要求,交的截图是错误的. import java.io.FileInputStream; import java.io.IOException; import java.io.Inp ...
- combotree -下拉框树异步加载
问题: 下拉树数据比较多时,全加载会产生页面延迟,需要实现异步加载 方案: 点击事件加载:先加载部分,点击节点时再展开并追加子节点 onBeforeExpand事件:在展开树前加载,感觉这种方式比较优 ...
- 读懂UML类图
平时阅读一些远吗分析类文章或是设计应用架构时没少与UML类图打交道.实际上,UML类图中最常用到的元素五分钟就能掌握,下面赶紧来一起认识一下它吧: 一.类的属性的表示方式 在UML类图中,类使用包含类 ...
- EOJ3134. 短信激活码(大数幂取模)
题面 输入只有5位,所以转化为long long类型用快速幂取模 前面补0的写法printf("%05lld\n",ans);如果ans不足5位会在前面补0 #include< ...
- Linux的10个最危险的命令
Linux命令行佷有用.很高效,也很有趣,但有时候也很危险,尤其是在你不确定你自己在正在做什么时候. 这篇文章将会向你介绍十条命令,但你最好不要尝试着去使用. 当然,以下命令通常都是在root权限下才 ...
- 怎样安装TortoiseGit
TortoiseGit是基于Windows的Git图形化工具 访问 https://tortoisegit.org/
- 【snmp】Linux开启snmp及查询
1.Linux snmp 1.安装snmp yum install -y net-snmp* 2.备份snmp配置 cp /etc/snmp/snmpd.conf /etc/snmp/snmpd.co ...
- openstack-r版(rocky)搭建基于centos7.4 的openstack swift对象存储服务 一
openstack-r版(rocky)搭建基于centos7.4 的openstack swift对象存储服务 一 openstack-r版(rocky)搭建基于centos7.4 的openstac ...
- 1.hive介绍及安装配置
1.Hive介绍 数据库OLTP 在线事务处理 数据仓库OLAP 在线分析处理 延迟高 类sql方式(HQL) 使用sql方式,用来读写,管理位于分布式存储系统上的大型数据集的数据仓库技术 hive是 ...
- Pythagorean Triples毕达哥斯拉三角(数学思维+构造)
Description Katya studies in a fifth grade. Recently her class studied right triangles and the Pytha ...