bzoj4569-萌萌哒
题目
有一个长度为\(n\)的十进制数,用\(s\)表示。有\(m\)个限制条件,每个条件形如:\((l_1,r_1,l_2,r_2)\),表示\(s[l_1:r_1]=s[l_2:r_2]\)。
现在给出这些限制条件,问有多少个数满足条件。
\(n,m\le 10^5\) 。
分析
这个题这是神奇!!
首先如果暴力的话,那么我们是把每一个条件的每一个对应位用并查集并起来,最后统计集合的个数\(x\),就可以用\(9*10^{x-1}\)来计算答案了(第一位所在的集合只能填1-9)。
然而限制条件数特别多,暴力显然是不行的。最开始想的是线段树,然而不会做。
考虑类似ST表的方法,我们把这个区间划分成前\(2^j\)位和后\(2^j\)位,那么就变成了这两端\(2^j\)位分别对应相同。我们开\(\log n\)个并查集,每一层记录对应\(j\)的相同性,我们就可以快速处理完每个条件了。
处理完所有条件之后,我们会得到\(\log n\)个并查集,第\(j\)个并查集的\(x,y\)在同一个集合中就表示\(s[x:x+2^j-1]=s[y:y+2^j-1]\)。我们从上往下(\(j\)从大到小)把这个相同性推到下一层去,就可以在总时间\(O((n+m)\log n\cdot \alpha (n))\)的复杂度内得到最后的并查集。最后扫一遍得到集合数即可。
这题中先用ST表思想处理条件,最后统计的方法是很妙的。
代码
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long giant;
int read() {
int x=0,f=1;
char c=getchar();
for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=1e5+1;
const int maxj=17;
const int q=1e9+7;
int bin[maxn],n;
inline int Multi(int x,int y) {return (giant)x*y%q;}
inline int mi(int x,int y) {
int ret=1;
for (;y;y>>=1,x=Multi(x,x)) if (y&1) ret=Multi(ret,x);
return ret;
}
struct SET {
int f[maxn];
void init(int n) {for (int i=1;i<=n;++i) f[i]=i;}
int find(int x) {return f[x]==x?x:f[x]=find(f[x]);}
int merge(int x,int y) {
int fx=find(x),fy=find(y);
if (fx!=fy) f[fx]=fy;
}
} st[maxj];
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
n=read();
for (int i=2;i<=n;++i) bin[i]=bin[i>>1]+1;
for (int i=bin[n];i>=0;--i) st[i].init(n);
for (int m=read();m;--m) {
int x=read(),y=read(),l=read(),r=read(),len=r-l+1,d=bin[len];
st[d].merge(x,l);
st[d].merge(y-(1<<d)+1,r-(1<<d)+1);
}
for (int j=bin[n];j;--j) {
for (int i=1;i+(1<<j)-1<=n;++i) {
int p=st[j].find(i);
st[j-1].merge(i,p);
st[j-1].merge(i+(1<<(j-1)),p+(1<<(j-1)));
}
}
int cnt=0;
for (int i=1;i<=n;++i) cnt+=(st[0].find(i)==i);
int ans=Multi(9,mi(10,cnt-1));
printf("%d\n",ans);
return 0;
}
bzoj4569-萌萌哒的更多相关文章
- 【BZOJ4569】萌萌哒(并查集,倍增)
[BZOJ4569]萌萌哒(并查集,倍增) 题面 BZOJ 题意: 有一个长度为\(n\)的数 给定\(m\)个限制条件 每次限制\(l1-r1\)与\(l2-r2\)是相同的 求出方案数 题解 如果 ...
- 【BZOJ4569】[Scoi2016]萌萌哒 倍增+并查集
[BZOJ4569][Scoi2016]萌萌哒 Description 一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条件表示为四 ...
- [BZOJ4569] [Luogu 3295] [SCOI2016]萌萌哒(并查集+倍增)
[BZOJ4569] [Luogu 3295] [SCOI2016]萌萌哒(并查集+倍增) 题面 有一个n位的十进制数a(无前导0),给出m条限制,每条限制\((l_1,r_1,l_2,r_2)(保证 ...
- 【BZOJ-4569】萌萌哒 ST表 + 并查集
4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 459 Solved: 209[Submit][Status] ...
- 【bzoj4569 scoi2016】萌萌哒
题目描述 一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条件表示为四个数,l1,r1,l2,r2,即两个长度相同的区间,表示子串S ...
- BZOJ4569 SCOI2016萌萌哒(倍增+并查集)
一个显然的暴力是用并查集记录哪些位之间是相等的.但是这样需要连nm条边,而实际上至多只有n条边是有用的,冗余过多. 于是考虑优化.使用类似st表的东西,f[i][j]表示i~i+2^j-1与f[i][ ...
- [BZOJ4569][SCOI2016]萌萌哒(倍增+并查集)
首先有一个显然的$O(n^2)$暴力做法,将每个位置看成点,然后将所有限制相等的数之间用并查集合并,最后答案就是9*(10^连通块的个数).(特判n=1时就是10). 然后比较容易想到的是,由于每次合 ...
- BZOJ4569 [SCOI2016]萌萌哒 【并查集 + 倍增】
题目链接 BZOJ4569 题解 倍增的思想很棒 题目实际上就是每次让我们合并两个区间对应位置的数,最后的答案\(ans = 9 \times 10^{tot - 1}\),\(tot\)是联通块数, ...
- BZOJ4569 : [Scoi2016]萌萌哒
建立ST表,每层维护一个并查集. 每个信息可以拆成两条长度为$2$的幂次的区间相等的信息,等价于ST表里两对点的合并. 然后递归合并,一旦发现已经合并过了就退出. 因为一共只会发生$O(n\log n ...
- 2018.07.31 bzoj4569: [Scoi2016]萌萌哒(并查集+倍增)
传送门 对于每个限制,使用倍增的二进制拆分思想,用并查集数组fa[i][j]" role="presentation" style="position: rel ...
随机推荐
- Oracle下如何用rman备份到特定的sequence
本文为摘抄,目的为方便日后阅读: http://docs.oracle.com/cd/B12037_01/server.101/b10734/rcmbackp.htm To determine the ...
- 北京Uber优步司机奖励政策(4月12日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- cv::Mat转换QImage
cvtColor(img, img, CV_BGR2RGB); QImage image((uchar*)img.data,img.cols,img.rows,QImage::Format_RGB88 ...
- 后缀数组(SA)总结
后缀数组(SA)总结 这个东西鸽了好久了,今天补一下 概念 后缀数组\(SA\)是什么东西? 它是记录一个字符串每个后缀的字典序的数组 \(sa[i]\):表示排名为\(i\)的后缀是哪一个. \(r ...
- CF 1093 E. Intersection of Permutations
E. Intersection of Permutations 链接 题意: 给定两个序列,询问第一个排列的[l1,r1]和第二个排列[l2,r2]中有多少个共同的数,支持在第二个排列中交换两个数. ...
- IAR里面STM32工程使用printf
1. 首先打开工程的options设置 2. 设置编译器的预宏定义,添加宏定义_DLIB_FILE_DESCRIPTOR 3. 修改文件DLib_Defaults.h DLib_Defaults.h ...
- TeamViewer卡在正在初始化显示参数
在windows的mstsc远程桌面中打开teamviewer,远程桌面开着的时候可以连接teamviewer,但是当我断开mstsc之后,再用teamviewer连就连接不上了,一直都是正在初始化显 ...
- 用php实现简单的自制计算器
存档: <!DOCTYPE html> <html> <head> <title>PHP实现计算器</title> </head> ...
- 学习HTML 第二节.HTML头部
HTML为什么要有个头部?还不太明白,可能是一些要提前声明的东西吧.先看看有什么内容吧. 可以添加在头部区域的元素标签为: <title>标题,这个我们知道了: <meta>使 ...
- 内容安全策略(CSP)
内容安全策略(CSP),其核心思想十分简单:网站通过发送一个 CSP 头部,来告诉浏览器什么是被授权执行的与什么是需要被禁止的.其被誉为专门为解决XSS攻击而生的神器. 1.CSP是什么 CSP指的是 ...