Triangle
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 9060   Accepted: 2698

Description

Given n distinct points on a plane, your task is to find the triangle that have the maximum area, whose vertices are from the given points.

Input

The input consists of several test cases. The first line of each test case contains an integer n, indicating the number of points on the plane. Each of the following n lines contains two integer xi and yi, indicating the ith points. The last line of the input is an integer −1, indicating the end of input, which should not be processed. You may assume that 1 <= n <= 50000 and −104 <= xi, yi <= 104 for all i = 1 . . . n.

Output

For each test case, print a line containing the maximum area, which contains two digits after the decimal point. You may assume that there is always an answer which is greater than zero.

Sample Input

3
3 4
2 6
2 7
5
2 6
3 9
2 0
8 0
6 5
-1

Sample Output

0.50
27.00

Source

旋转卡壳算法可以参见我的上一篇博客以及里面的链接:http://www.cnblogs.com/liyinggang/p/5431908.html

题意:求解平面中的点中任意取三个能够形成最大的三角形面积。

题解:先用凸包把所有可能的点选出来,最大三角形必定是由凸包上的三点形成。

我们枚举底边,于是我们可以的到以下两种情况:

1.此三角形的底边在凸包上,求得次边对应的最远的点(不是对踵点),由于凸包是个单峰函数,所以只要找到第一个这个点比上一个点

大就找到了。记录下此时的面积(对应黄色线条).

2.如果三角形底边不再凸包上,我们利用同样的方法找到离此底边最远的点(对应红色线条)

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAATMAAAFbCAIAAAA2nf4+AAAKHElEQVR4nO3bS3bkxhFAUS7EQ+9/Z554A/AA7lI3u6oIoBBAfO49WgAyIh9TIo++FiCfr7s/AHhCmZCRMiEjZUJGyoSMlAkZKRMyUiZkpEzISJmQkTIhI2VCRsqEjJQJGSkTMlImZKRMyEiZkJEyISNlQkbKhIyUCRkpEzJSJmSkTMhImZCRMiEjZUJGyuzj65e7P4QT2GITX3+5+4v4iP2V93eT4mzA8gp706Q+q7O2qjZmKc6i7KyeXU3qsyjbKmZLeOJswKrK2PUeejyrs6QajmUmzrpsKLsP6/J4FmU3qZ0VlTjLsZikTm/J41mLlWQUl5A4q7CPXC4ox+NZgk0kcmUw4kzOGlK4pROPZ2YWcL978xBnTqZ/pyRVeDwTMvfbZIsh2/cMZ+g3SNuAxzMP475a/quf/wsnMOvrFLrxHs/bmfJFKl70it/chhGHK32/PZ53MdxYPa51j1PUYrJRmt1mj+fFzDRE10vc9VwJGejJ2t9dj+c1jPJMc67snJPexRzPMfCmejxDmeAJJl/QyWcPZXwfcS8Xj2cMgzvOdfydaZzL1I5wC5/yeJ7IvPZx+X5kPqcwrB3cuY38/PqcMW3iqh1gYp8wo5+5YYf5iXaY6bzjYp3CDA8wmpfcpxP5GbeXoTzhGgUx1e1M5Du3J5SfehuZxT/cmMsY9Y8M4v/clYt5PN8zAk3eyfBfGX9+N+NuHs+nBp/cbcjEOr6Zemz3IB+P5+/mHdjuc7Og1bDT2noFHs9lTpk2Xc7wlc045Owd1zX58ex+vKl77WTmElufbeRGWxr4eDY91bAtDjFqrR2PNGl/08x5PHsdZsbOmLDoRicZsC0e2j+eLc7QekO80Xj19Q/Qdzds0fXxrPzpHffBMf0uQ9nvbrcJPtTs8Sz4xY2mz+naXI9qn9tl7sTp8XjW+dD6s+ZK1S9Mka8sPmVuUfraFPjE5cWI7/4oaih6eQp84vJsuHd/EZVUvD8FPnFZluW/X+s///nXv9d/7v4gilFmgF9ZfotTn2ynzAB/lunx5ABlBnhWpseTXZQZYEOZ4uQ9ZQbYVqY+eUOZAfaUKU6eUmaAF2Uuy/IqTn3yjTIDvC5zESfbKDPA2zJX+uQ9ZQbYUObyNk59oswA28pciZOnlBlgT5krffKNMgPsL3MRJ39SZoBDZa70yUqZAT4ocxEny7IoM8RnZa70OZwyA5xR5uLPKrMpM8BJZa7EOZMyA5xa5uLxHEmZAc4ucyXOUZQZIKbMlT6HUGaAyDIXcc6gzADBZa702ZsyA1xS5uI3Q60pM8BVZa7E2ZIyA1xb5uLx7EiZAS4vcyXOTpQZ4KYyV/rsQZkBbi1zEWcLygxwd5krfZamzAA5ylz8ZqgyZQZIU+ZKnBUpM0CyMhePZ0HKDJCvzJU4C1FmgKxlrvRZgjID5C5zEWcFygyQvsyVPjNTZoAiZS7iTEyZAeqUudJnQsoMUK3MxZ9V8lFmgIJlrsSZhzIDlC1z8XimocwAlctcifN2ygxQv8yVPm+kzABdylzEeR9lBmhU5kqf11NmgHZlLn4zdDllBuhY5kqcl1FmgL5lLh7PqygzQOsyV+KMpswAA8pc6TOOMgOMKXMRZxhlBphU5kqfp1NmgHllLn4zdDZlBhhZ5kqcZ1FmgMFlLh7PkygzwOwyV+L8kDIDKPMXfR6mzADK/I04j1FmAGX+RZ97KTOAMp8R5y7KDKDM1/S5kTJjKPM1f1bZQpkxlPkTcb6nzBj+hXYDj+cbyoyhzM3E+ZQyYyhzJ31+o8wYytxPnL9TZgxlHqXPlTJjKPMDfjO0KDOKMj82PE5lxlDmGSY/nsqMoczzzIxTmTGUebZpfSozhjIDjIpTmTGUGWZIn8qMocxIE34zpMwYyozXO05lxlDmJRo/nsqMocwLtYxTmTGUeblmfSozhjLv0ClOZcZQ5n169KnMGMq8VYM4lRlDmQmU7lOZMZSZQ90/qygzhjIzqRinMmMoM5lyj6cyYygzpUJxKjOGMhMr0acyYygzt/xxKjOGMivI3KcyYyiziLS/GVJmDGWWkjBOZcZQZjXZHk9lxlBmTXniVGYMZVaWoU9lxlBmcbfHqcwYymzhxj6VGUOZXdz1myFlxlBmL9fHqcwYymzn4sdTmTGU2dRlcSozhjJbu6BPZcZQZnfRcSozhjJniOtTmTGUOUZQnMqMocxhTu9TmTGUOc+5f1ZRZgxlTnVWnMqMoczZPu9TmTGUOd6HcSozhjJZluWDPpUZQ5n8cixOZcZQJn/a26cyYyiTv+z6s4oyYyiTFzbGqcwYyuS1LY+nMmMok5+8j1OZMZTJNm/6VGYAZbLZljjv/safFfjEZVEmu73v8+6v+1mBT1wWZXLEif+ryvWKXG5lcpQyA319KZPjlBnlj9+qyZL9vr6+/Hfm+b6eufujqKHo5SnwicuL4VYZMTeqe20KfOJKnOxS/cLU+MrVm1lXGTfXaHBPynzoQ4OhE6fN9Sj2uSuPJ091uhX1vvih0xr4UL/LUPW7H/qthL1a3oHCn/7QcjFs0Xj15Q/w0HhJPNV74x3O8NB7VTxMWHSfkzxMWNtkQ/bb6jAPQ5Y3zai1NjzSw6hFtjdtmz1P9TBtnS3NXGLnsz3MXG0PY3fX/HgPYxdc1/CVjTjkw/BlF2JTU875YOXJWdBq1mkfrD8ne3kYd+AHlyAV6/hm6LEfXIgMbOFvc0/+4FrcyPBfmX7+B1fkemb+hhH8w0W5jFH/yCC+c2mimfAWZvGEqxPEYLczkZdco3OZ5y6G8o7LdApjPMBofuZifcL0jjGdTVyvAwztE2a0g6u2nVl9yJj2eXPh3LmV+ZzCsI5w+V4xmbOY10Eez29M41ym9hHXcWUOpzO4Tw1/PCefPZTxnWPmBZ156muY4GlGPZ5zTnoXczzZhCs74Yy3M8oQXe9u13MlZKBR+l3ififKzExj9bjNPU5Ri8mGq36tq39/UYZ7kYr3u+I3t2HE16l10Wt9bT+mfLX8Nz7/F05g1jfIfPUzf9soxn2bbA1k+57hDP1OeWLI8yWszP1+91ahyZxMP4W78pBlWhaQyJWdaDI5a8jlmmBkmZ9NZBRXjiarsI+kIhKSZSFWktpZLWmyHIvJ7vOoZFmR3dRwrC5N1mVDZezNTJalWVIxW3rTZANWVc/78GTZg21V9aZATTZgZ4XJsjFrK0+TLVleB7Lsx/760GQntggZKRMyUiZkpEzISJmQkTIhI2VCRsqEjJQJGSkTMlImZKRMyEiZkJEyISNlQkbKhIyUCRkpEzJSJmSkTMhImZCRMiEjZUJGyoSMlAkZKRMyUiZkpEzISJmQkTIhI2VCRsqEjJQJGSkTMlImZKRMyEiZkJEyISNlQkbKhIyUCRkpEzJSJmSkTMhImZCRMiEjZUJGyoSMlAkZKRMyUiZkpEzISJmQkTIhI2VCRsqEjP4HpC/b5jY7ZMAAAAAASUVORK5CYII=" alt="" width="183" height="207" />1,2相比,取大值

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; const int N = ;
struct Point{
int x,y;
}p[N],Stack[N];
int n; int mult(Point a,Point b,Point c){
return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);
}
int dis(Point a,Point b){
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
int cmp(Point a,Point b){
if(mult(a,b,p[])>) return ;
if(mult(a,b,p[])==&&dis(b,p[])>dis(a,p[])) return ;
return ;
}
int Graham(){
sort(p+,p+n,cmp);
int top = ;
Stack[]=p[];
Stack[]=p[];
Stack[]=p[];
for(int i=;i<n;i++){
while(top>=&&mult(p[i],Stack[top],Stack[top-])>=){
top--;
}
Stack[++top]=p[i];
}
return top;
}
double rotating_calipers(int top){
int p=,q=; ///初始化
double ans = ;
Stack[++top]=Stack[];
for(int i = ;i<top;i++){
while(mult(Stack[i],Stack[p],Stack[q+])>mult(Stack[i],Stack[p],Stack[q])){
q= (q+)%top; ///定点i,p,q,先I,p固定,让q旋转找到最大的面积三角形,还是利用了凸包的单峰函数
}
ans = max(ans,mult(Stack[i],Stack[p],Stack[q])/2.0);
while(mult(Stack[i],Stack[p+],Stack[q])>mult(Stack[i],Stack[p],Stack[q])){
p=(p+)%top; ///i,q固定,p旋转,找到最大的三角形面积,比较记录.
}
ans = max(ans,mult(Stack[i],Stack[p],Stack[q])/2.0);
}
return ans;
}
int main()
{
while(scanf("%d",&n)!=EOF,n!=-){
for(int i=;i<n;i++){
scanf("%d%d",&p[i].x,&p[i].y);
}
int k = ;
for(int i=;i<n;i++){
if(p[k].y>p[i].y||(p[k].y==p[i].y)&&(p[k].x>p[i].x)){
k=i;
}
}
swap(p[],p[k]);
int top = Graham();
double ans =rotating_calipers(top);
printf("%.2lf\n",ans);
}
return ;
}

poj 2079(旋转卡壳求解凸包内最大三角形面积)的更多相关文章

  1. poj 3608(旋转卡壳求解两凸包之间的最短距离)

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9768   Accepted: ...

  2. Bridge Across Islands POJ - 3608 旋转卡壳求凸包最近距离

    \(\color{#0066ff}{题目描述}\) 几千年前,有一个小王国位于太平洋的中部.王国的领土由两个分离的岛屿组成.由于洋流的冲击,两个岛屿的形状都变成了凸多边形.王国的国王想建立一座桥来连接 ...

  3. Poj 2187 旋转卡壳

    Poj 2187 旋转卡壳求解 传送门 旋转卡壳,是利用凸包性质来求解凸包最长点对的线性算法,我们逐渐改变每一次方向,然后枚举出这个方向上的踵点对(最远点对),类似于用游标卡尺卡着凸包旋转一周,答案就 ...

  4. POJ 2187 Beauty Contest【旋转卡壳求凸包直径】

    链接: http://poj.org/problem?id=2187 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  5. poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方

    旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...

  6. UVa 1453 - Squares 旋转卡壳求凸包直径

    旋转卡壳求凸包直径. 参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html #include <cstdio> ...

  7. bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包

    [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2081  Solved: 920 ...

  8. poj 2079 Triangle (二维凸包旋转卡壳)

    Triangle Time Limit: 3000MS   Memory Limit: 30000KB   64bit IO Format: %I64d & %I64u Submit Stat ...

  9. POJ 2187 - Beauty Contest - [凸包+旋转卡壳法][凸包的直径]

    题目链接:http://poj.org/problem?id=2187 Time Limit: 3000MS Memory Limit: 65536K Description Bessie, Farm ...

随机推荐

  1. Centos7安装Redis4.0.8

    今天安装了CentOS7 1708 在安装redis时报错  make[1]: *** [adlist.o] 错误 127 因为Redis是C实现的,需要gcc来进行编译,所以原因是系统未安装gcc, ...

  2. 博客存档TensorFlow入门一 1.4编程练习

        import tensorflow as tf import numpy import matplotlib.pyplot as plt #from sklearn.model_selecti ...

  3. 【luogu P1850 换教室】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1850 难的不在状态上,难在转移方程. (话说方程写错居然还有84分= =) #include <cst ...

  4. UVA - 1160(简单建模+并查集)

    A secret service developed a new kind of explosive that attain its volatile property only when a spe ...

  5. Asp.net MVC使用FormsAuthentication,MVC和WEB API可以共享身份认证 (转载)

    在实际的项目应用中,很多时候都需要保证数据的安全和可靠,如何来保证数据的安全呢?做法有很多,最常见的就是进行身份验证.验证通过,根据验证过的身份给与对应访问权限.同在Web Api中如何实现身份认证呢 ...

  6. NSDate|NSTimeZone|时区|日历

    NSDate,NSDateFormatter以及时区转换-开发者-51CTO博客 iOS 时区转换 东八区 - 简书 iOS时间的时区转换以及一些方法记录 - 简书 iOS - OC NSTimeZo ...

  7. Python-常见错误梳理

    1. takes exactly 1 argument (2 given) 出现此错误一般是在某对象调用类的某方法时出现.因为在python中某类的实例对象调用方法时,是首先将自身作为一个参数传入此方 ...

  8. Java---Huffman树的实现

    什么是哈弗曼树 1.哈弗曼树是最优二叉树,树的带权路径长度最小的一个二叉树. 2.带权路径长度为根节点到该节点的路径长度和该节点权重的乘积.3.路径长度为当前节点到另一个节点所经过的分支的个数(边的个 ...

  9. (二)ubuntu下安装Amd RX470驱动

    0X:ADM官方下载驱动 https://www.amd.com/en/support 查看本机驱动命令 lspci | grep -i vga 选择自己的驱动 下载对应的版本 现在最新的是:amdg ...

  10. jar下载地址

    java开发难免需要下载额外的jar,推荐一个地址 http://www.java2s.com/Code/Jar/CatalogJar.htm