【BZOJ2453】维护队列

Description

你小时候玩过弹珠吗?
小朋友A有一些弹珠,A喜欢把它们排成队列,从左到右编号为1到N。为了整个队列鲜艳美观,小朋友想知道某一段连续弹珠中,不同颜色的弹珠有多少。当然,A有时候会依据个人喜好,替换队列中某个弹珠的颜色。但是A还没有学过编程,且觉得头脑风暴太浪费脑力了,所以向你来寻求帮助。

Input

输入文件第一行包含两个整数N和M。
第二行N个整数,表示初始队列中弹珠的颜色。
接下来M行,每行的形式为“Q L R”或“R x c”,“Q L R”表示A想知道从队列第L个弹珠到第R个弹珠中,一共有多少不同颜色的弹珠,“R x c”表示A把x位置上的弹珠换成了c颜色。

Output

对于每个Q操作,输出一行表示询问结果。

Sample Input

2 3
1 2
Q 1 2
R 1 2
Q 1 2

Sample Output

2
1

HINT

对于100%的数据,有1 ≤ N ≤ 10000, 1 ≤ M ≤ 10000,小朋友A不会修改超过1000次,所有颜色均用1到10^6的整数表示。

题解:听说这题卡树套树(没写过)

我们还是考虑分块

一个经典的分块思路:我们用pre[i]表示i之前第一个与i颜色相同的弹珠,这样在询问时,在[l,r]中pre[i]小于l的i的个数就是答案。发现这个pre数组有一个很好的性质,即单调性,因此我们想到在教主的魔法那里用的办法,新建一个数组,块内按pre排序,这样就能二分查找出一个块内pre[i]<l的i的个数,然后就很容易了

现在我们考虑怎么修改,题目里说保证修改次数不多于1000,因此网上很多大犇都用的是暴力修改,但毕竟我们是读书人,怎能用暴力呢?

其实不用暴力修改也很(ju)容(ma)易(fan)

我们新开一个数组s[i][j]表示第i个块里,颜色为j个弹珠的个数。然后修改时我们要找到这个点:前面+后面,与原来的颜色相同的+与修改后颜色相同的,最近的点是哪个,(说白了就是维护pre数组),那我们就先在自己的块里找,然后在一个一个块扫,直接看s数组就可以知道块里有没有要找的数,然后在进入块里一个一个扫。时间复杂度:扫块sqrt(n),扫块内sqrt(n),所以加起来还是sqrt(n),比起那些O(n)来说简直有莫大的优越感

现在问题来了,你们想看压行的代码还是不压行的代码?反正我压了

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=11010;
int n,m,siz,ans,tot;
char str[5];
int p[maxn],q[maxn],ref[1000010],pre[maxn],s[110][maxn];
void rebuild(int x)
{
for(int i=x*siz;i<x*siz+siz;i++) q[i]=pre[i];
sort(q+x*siz,q+x*siz+siz);
}
int main()
{
scanf("%d%d",&n,&m);
siz=int(sqrt(1.0*n));
int i,j,k,a,b,l,r,mid,flag;
memset(ref,-1,sizeof(ref));
for(i=0;i<n;i++)
{
scanf("%d",&p[i]);
if(ref[p[i]]==-1) ref[p[i]]=++tot;
p[i]=ref[p[i]],s[i/siz][p[i]]++,pre[i]=-1,flag=0;
if(s[i/siz][p[i]]>1) for(k=i-1;k>=i/siz*siz&&!flag;k--) if(p[k]==p[i]) pre[i]=k,flag=1;
for(j=i/siz-1;j>=0&&!flag;j--) if(s[j][p[i]]) for(k=j*siz+siz-1;k>=j*siz&&!flag;k--) if(p[k]==p[i]) pre[i]=k,flag=1;
}
for(i=n;i<(n-1)/siz*siz+siz;i++) p[i]=pre[i]=1<<30;
for(i=0;i*siz<=n;i++) rebuild(i);
for(i=1;i<=m;i++)
{
scanf("%s%d%d",str,&a,&b);
if(str[0]=='Q')
{
a--,b--,ans=0;
if(a/siz==b/siz)
{
for(j=a;j<=b;j++) ans+=pre[j]<a;
printf("%d\n",ans);
continue;
}
for(j=a;j<a/siz*siz+siz;j++) ans+=pre[j]<a;
for(j=b/siz*siz;j<=b;j++) ans+=pre[j]<a;
for(j=a/siz*siz+siz;j<b/siz*siz;j+=siz)
{
l=j,r=j+siz;
while(l<r)
{
mid=l+r>>1;
if(q[mid]<a) l=mid+1;
else r=mid;
}
ans+=l-j;
}
printf("%d\n",ans);
}
else
{
flag=0,a--;
if(ref[b]==-1) ref[b]=++tot;
b=ref[b];
if(s[a/siz][p[a]]>1) for(k=a+1;k<a/siz*siz+siz&&!flag;k++) if(pre[k]==a) pre[k]=pre[a],flag=1;
for(j=a/siz+1;j*siz<n&&!flag;j++) if(s[j][p[a]]) for(k=j*siz;k<j*siz+siz&&!flag;k++) if(pre[k]==a) pre[k]=pre[a],flag=1,rebuild(j);
s[a/siz][p[a]]--,flag=0;
if(s[a/siz][b]) for(k=a-1;k>=a/siz*siz&&!flag;k--) if(p[k]==b) pre[a]=k,flag=1;
for(j=a/siz-1;j>=0&&!flag;j--) if(s[j][b]) for(k=j*siz+siz-1;k>=j*siz&&!flag;k--) if(p[k]==b) pre[a]=k,flag=1,rebuild(j);
if(!flag) pre[a]=-1;
flag=0;
if(s[a/siz][b]) for(k=a+1;k<a/siz*siz+siz&&!flag;k++) if(p[k]==b) pre[k]=a,flag=1;
for(j=a/siz+1;j*siz<n&&!flag;j++) if(s[j][b]) for(k=j*siz;k<j*siz+siz&&!flag;k++) if(p[k]==b) pre[k]=a,flag=1,rebuild(j);
s[a/siz][b]++,p[a]=b;
rebuild(a/siz);
}
}
return 0;
}

【BZOJ2453】维护队列/【BZOJ2120】数颜色 分块的更多相关文章

  1. BZOJ2453维护队列&&BZOJ2120数颜色

    2016-05-28 11:20:22 共同的思路: 维护某种颜色上一次在哪里出现pre,可以知道当pre<询问的l时更新答案 块内按照pre排序 修改的时候重新O(n)扫一遍,如果和之前的不一 ...

  2. [BZOJ2120] 数颜色 && [bzoj2453] 维护队列(莫队 || 分块)

    传送门 只有第一个,第二个权限题. 分块,然而wa,没看出来错在哪里,有时间再看. #include <cmath> #include <cstdio> #include &l ...

  3. bzoj2120 数颜色 分块

    分块大法好 orz 处理出每个点的前驱和后继位置. 暴力修改,查询就在每个整块里查询pre<l的,暴力跑两边就好了 #include<cstdio> #include<cstr ...

  4. Luogu 1903 数颜色 | 分块

    Luogu 1903 数颜色 | 分块 莫队不会啊-- 这道题直接分块也能卡过! 这道题的做法很有趣:对于每个位置i,记录它的颜色a[i]上一次出现的位置,记为pre[i]. 这样在查询一个区间[l, ...

  5. BZOJ2120 数颜色 【带修莫队】

    BZOJ2120 数颜色 Description 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到 ...

  6. 【BZOJ-2453&2120】维护队列&数颜色 分块 + 带修莫队算法

    2453: 维护队列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 653  Solved: 283[Submit][Status][Discuss] ...

  7. Bzoj 2453: 维护队列 && Bzoj 2120: 数颜色 分块,bitset

    2453: 维护队列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 578  Solved: 247[Submit][Status][Discuss] ...

  8. BZOJ2453: 维护队列

    2453: 维护队列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 183  Solved: 89[Submit][Status] Descripti ...

  9. [bzoj2453]维护队列_带修改莫队

    维护队列 bzoj-2453 题目大意:给定一个n个数序列,支持查询区间数的种类数,单点修改.不强制在线. 注释:$1\le n,m\le 10^5$. 想法: 带修改莫队裸题. 如果没有修改操作的话 ...

随机推荐

  1. 使用RAID与LVM磁盘阵列技术。

    7.2 LVM逻辑卷管理器 前面学习的硬盘设备管理技术虽然能够有效地提高硬盘设备的读写速度以及数据的安全性,但是在硬盘分好区或者部署为RAID磁盘阵列之后,再想修改硬盘分区大小就不容易了.换句话说,当 ...

  2. eclipse-设置默认编码格式为UTF-8

    需要设置的几处地方为: Window->Preferences->General ->Content Type->Text->JSP 最下面设置为UTF-8 Window ...

  3. Spring下获取项目根路径--good

    Spring 在 org.springframework.web.util 包中提供了几个特殊用途的 Servlet 监听器,正确地使用它们可以完成一些特定需求的功能.比如某些第三方工具支持通过 ${ ...

  4. delete指针以后应赋值为NULL——QT deletelater指针以后也同样要马上赋值为NULL

    delete p后,只是释放了指针指向的内存空间.p并不会自动被置为NULL,而且指针还在,同时还指向了之前的地址 delete NULL编译器不会报错(因为delete空指针是合法的) 例: 对一个 ...

  5. MVC路由机制(转)

    今天我来缕一下MVC的路由机制,因为使用MVC已经快一年了,之前也只是上手,没有系统去理会.项目完了,结合实际使用,回过头来深入一下. MVC 学习索引(点击即可) 一个请求进入IIS后 传统ASP. ...

  6. http的GET和POST

    本文主要内容 1.  GET和POST方法介绍 2.  源代码分析 3.  结果分析 4.  例子参考及引用: http://www.cnblogs.com/zhijianliutang/archiv ...

  7. 启动vsftpd失败

    启动vsftpd失败 在使用centos时, 要用ftp上传文件, 但是一到脚本的ftp命令就会出错: rpm -Uvh http://mirror.centos.org/centos/6/os/i3 ...

  8. Spring-更多DI的知识

    3.3.1 延迟初始化Bean 延迟初始化也叫做惰性初始化,指不提前初始化Bean,而是只有在真正使用时才创建及初始化Bean. 配置方式很简单只需在<bean>标签上指定 “lazy-i ...

  9. 关于write solid code中的memset

    文中说明memset可以通过操作整形以加速程序执行速度,这一点值得肯定,问题在于unicore或arm中协处理器有地址访问对齐检查,如果我们如此操作,编译器最终使用str指令来完成,那么当地址未对齐时 ...

  10. 调整swap分区大小-Linux下安装Oracle时报swap不够解决方法

    调整swap分区大小 方法一:如果磁盘有剩余的空间,用分区工具新建一个swap分区.并写到/etc/fstab里面.再 #swapon -a方法二:可以用一个文件做交换分区. su root cd / ...