描述

无向连通图 G 有 n 个点,n-1 条边。点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1。图上两点(u, v)的距离定义为 u 点到 v 点的最短距离。对于图 G 上的点对(u, v),若它们的距离为 2,则它们之间会产生WuWu×WvWv的联合权值。

请问图 G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?

格式

输入格式

第一行包含 1 个整数 n。

接下来 n-1 行,每行包含 2 个用空格隔开的正整数 u、v,表示编号为 u 和编号为 v 的点 之间有边相连。

最后 1 行,包含 n 个正整数,每两个正整数之间用一个空格隔开,其中第 i 个整数表示 图 G 上编号为 i 的点的权值为WiWi

输出格式

输出共 1 行,包含 2 个整数,之间用一个空格隔开,依次为图 G 上联合权值的最大值 和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007取余。

样例输入:

5
1 2
2 3
3 4
4 5
1 5 2 3 10

样例输出:

20 74

思路:距离为2的两个结点为具有相同父亲结点的兄弟结点。依次遍历每个结点子节点,求权值之和sum以及各个结点权值平方值和self。该父结点的所有儿子结点产生的权值之和为sum*sum-self。联合权值最大值为遍历各个父节点儿子结点权值的最大值与次大值。求积再与全局变量比较。

#include <iostream>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MAXN=;
const int MOD=;
struct Edge{
int to,net;
}es[MAXN+MAXN];
int n,w[MAXN];
int head[MAXN],tot;
void addedge(int u,int v)
{
es[tot].to=v;
es[tot].net=head[u];
head[u]=tot++;
}
ll mx,res;
void solve()
{
for(int i=;i<=n;i++)
{
ll mx1=,mx2=;
ll sum=,self=;
for(int j=head[i];j!=-;j=es[j].net)
{
int v=es[j].to;
if(w[v]>=mx1)
{
mx2=mx1;
mx1=w[v];
}
else if(w[v]>mx2)
{
mx2=w[v];
}
sum+=w[v];
self+=(w[v]*w[v]);
}
mx=max(mx,mx1*mx2);
res+=(sum*sum);
res-=self;
res%=MOD;
}
}
int main()
{
memset(head,-,sizeof(head));
cin>>n;
for(int i=;i<n-;i++)
{
int u,v;
cin>>u>>v;
addedge(u,v);
addedge(v,u);
}
for(int i=;i<=n;i++)
{
cin>>w[i];
}
solve();
cout<<mx<<" "<<res<<endl;
return ;
}

vijos1906:联合权值的更多相关文章

  1. Vijos1906 联合权值 NOIP2014Day1T2 树形动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - Vijos1906 题意概括 有一棵树,每一个节点都有一个权值w[i].下面说的x,y都是该树中的节点. 对于 ...

  2. Codevs 3728 联合权值

    问题描述 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi ,每 条边的长度均为1.图上两点(u,v)的距离定义为u点到v点的最短距离.对于图G上的点 对(u,v),若它 ...

  3. P1906联合权值

    描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的最短距离. ...

  4. [NOIP2014] 提高组 洛谷P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  5. NOIp 2014 #2 联合权值 Label:图论 !!!未AC

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  6. 【洛谷P1351】联合权值

    我们枚举中间点,当连的点数不小于2时进行处理 最大值好搞 求和:设中间点 i 所连所有点权之和为sum 则对于每个中间点i的联合权值之和为: w[j]*(sum-w[j])之和 #include< ...

  7. Noip2014 提高组 T2 联合权值 连通图+技巧

    联合权值 描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的 ...

  8. NOIP2014 联合权值

    2.联合权值 (link.cpp/c/pas) [问题描述] 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi  ,每条边的长度均为1.图上两点(u, v)的距离定义为u ...

  9. NOIP2014提高组第二题联合权值

    还是先看题吧: 试题描述  无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi ,每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 ...

随机推荐

  1. .NET自带泛型委托方法Func、Action和Predicate

    Func.Action和Predicate是.NET自带的3个泛型委托方法,三个方法的区别其实并不大,要强行给混着用也是可以的,但是我们是有追求的人,把道理讲清楚总是好的. 一.Func是有返回值的方 ...

  2. leetcode刷题1:两数之和two_sum

    题目:(难度:Easy) 给定一个整数数组和一个目标值,找出数组中和为目标值的两个数. 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用. 示例: 给定 nums = [2, 7, 11, ...

  3. 【bzoj1925】地精部落[SDOI2010](dp)

    题目传送门:1925: [Sdoi2010]地精部落 这道题,,,首先可以一眼看出他是要我们求由1~n的排列组成,并且抖来抖去的序列的方案数.然后再看一眼数据范围,,,似乎是O(n^2)的dp?然后各 ...

  4. LeetCode——max-points-on-a-line

    Question Given n points on a 2D plane, find the maximum number of points that lie on the same straig ...

  5. php二维数组自定义排序

    $arr = array( '0' => array('id' =>1,'price'=>200), '1' => array('id' =>2,'price'=> ...

  6. Spark- 共享变量

    Shared Variables Normally, when a function passed to a Spark operation (such as map or reduce) is ex ...

  7. mogon操作数据库

    返回的本来就是promise redis是内存数据库,更适合放session等一些东西.而mongo不是.

  8. java:RandomAccessFile随机读取文件内容

    RandomAccessFile是用来访问那些保存数据记录的文件的,你就可以用seek( )方法来访问记录,并进行读写了.这些记录的大小不必相同:但是其大小和位置必须是可知的.但是该类仅限于操作文件. ...

  9. iOS开发中的系统版本比较

    由于系统平台和SDK更新迭代,一部分过时的成员.方法会被彻底从SDK中移除,为了兼容旧的设备,这时就需要区分系统平台版本调用正确的API. 另一种情况是iOS设备的屏幕和设备参数不同,虽然UI上的Au ...

  10. vue项目中引入element-ui时,如何更改主题色

    在我们做项目时,我们经常会遇到切换主题色的功能,下面我们就来说一下通过颜色选择器我们就能改变项目的主题颜色 代码如下: 颜色选择器所在组件: top-theme.vue内容如下: <templa ...