华盛顿大学 machine learning: Classification 笔记。

linear classifier 线性分类器

  

  多项式:

  

Logistic regression & 概率模型

   

  P(y = +1 | x) = ?

  使用 logistic函数

    

          

  

这个概率模型怎么来的?

  (李航《统计学习方法》)

  即

              

  考虑对输入x进行分类的线性函数 w x,其值域为实数域,线性函数wx可转换为概率:

               

  这时,线性函数值越接近正无穷,概率值就越接近1;线性函数值越接近负无穷,

概率值就越接近0。

  这种概率描述适用于这样的情况:即在P=0或P=1附近,P对X的变化不敏感。这种概率模型的应用场景主要是分类。

极大似然估计模型参数w

Maximize Likelihood Estimation(MLE) 极大似然估计

  

         

    即 选择使  l(w) 最大的参数 w。

  对 l(w) 取对数:

  

   展开得

   

梯度下降(Gradient-descent):

  

防止过拟合:

  即

   

  梯度下降

  

Classification week2: logistic regression classifier 笔记的更多相关文章

  1. 学习Logistic Regression的笔记与理解(转)

    学习Logistic Regression的笔记与理解 1.首先从结果往前来看下how logistic regression make predictions. 设我们某个测试数据为X(x0,x1, ...

  2. 李宏毅机器学习笔记3:Classification、Logistic Regression

    李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...

  3. Classification and logistic regression

    logistic 回归 1.问题: 在上面讨论回归问题时.讨论的结果都是连续类型.但假设要求做分类呢?即讨论结果为离散型的值. 2.解答: 假设: 当中: g(z)的图形例如以下: 由此可知:当hθ( ...

  4. 机器学习算法笔记1_2:分类和逻辑回归(Classification and Logistic regression)

    形式: 採用sigmoid函数: g(z)=11+e−z 其导数为g′(z)=(1−g(z))g(z) 如果: 即: 若有m个样本,则似然函数形式是: 对数形式: 採用梯度上升法求其最大值 求导: 更 ...

  5. 分类和逻辑回归(Classification and logistic regression)

    分类问题和线性回归问题问题很像,只是在分类问题中,我们预测的y值包含在一个小的离散数据集里.首先,认识一下二元分类(binary classification),在二元分类中,y的取值只能是0和1.例 ...

  6. Logistic Regression学习笔记

    1.李航<统计学习方法>: 2.https://blog.csdn.net/laobai1015/article/details/78113214 3.http://www.cnblogs ...

  7. 机器学习技法笔记:05 Kernel Logistic Regression

    Roadmap Soft-Margin SVM as Regularized Model SVM versus Logistic Regression SVM for Soft Binary Clas ...

  8. Logistic Regression Using Gradient Descent -- Binary Classification 代码实现

    1. 原理 Cost function Theta 2. Python # -*- coding:utf8 -*- import numpy as np import matplotlib.pyplo ...

  9. 深度学习 Deep LearningUFLDL 最新Tutorial 学习笔记 2:Logistic Regression

    1 Logistic Regression 简述 Linear Regression 研究连续量的变化情况,而Logistic Regression则研究离散量的情况.简单地说就是对于推断一个训练样本 ...

随机推荐

  1. 删除Kafka中topic

    步骤: 1.编辑Kafka启动时加载的配置文件server.properties,添加一行:delete.topic.enable=true 2.重启Zookeeper和Kafka 3.执行: ./b ...

  2. new AppiumDriver<>(new URL(url), capabilities) 报错 java.lang.NoSuchMethodError: com.google.common.base.Throwables.throwIfUnchecked(Ljava/lang/Throwable;)V

    2017-10-11 17:37:02.102 INFO c.u.a.r.PrepareDriver:41 - appium server url : http://127.0.0.1:4723/wd ...

  3. Download FFmpeg

    Builds Static builds provide one self-contained .exe file for each program (ffmpeg, ffprobe, ffplay) ...

  4. 云计算之路-阿里云上-十字路口:阿里云SLB故障

    2013年7月24日,18:20~18:50左右,处于阿里云云服务最前沿的SLB(负载均衡)出现故障,造成了网站不能正常访问(由于是最前沿,这次连502也看不到了). 在大家对昨日RDS故障带来的麻烦 ...

  5. lodash 提取前N个元素 take

    _.take(array, [n=1]) 从数组的起始元素开始提取 N 个元素. <!DOCTYPE html> <html lang="zh"> < ...

  6. Vue 常用属性汇总

    1.Vue实例常用属性 (1)数据 data:Vue 实例的数据对象 components:Vue实例配置局部注册组件 (2)类方法computed:计算属性 watch:侦听属性 filters:过 ...

  7. 2D游戏平滑的迷雾战争效果

    近期刚好有做2D游戏的点光源效果,然后就扩展一下.研究了一下战争迷雾的效果.主要是想实现相似魔兽争霸那种人物走动,然后黑色的战争迷雾随着人物的移动渐渐打开的效果.使用具有渐变透明图片作为光源来使得战争 ...

  8. Redis 3.2.8 集群模式+Sentinel多Master部署

    环境准备CentOS 7.3redis1 172.18.1.101:7001 masterredis2 172.18.1.102:7002 masterredis3 172.18.1.103:7003 ...

  9. oci学习

    http://www.cnblogs.com/ychellboy/archive/2010/04/16/1713884.html oci官方文档 Call Interface Programmer's ...

  10. 使用SAS令牌连接Azure EventHub

    概述 事件中心使用在命名空间和事件中心级别提供的共享访问签名.SAS令牌是从SAS密钥生成的,它是以特定格式编码的URL的SHA哈希. 事件中心可以使用密钥(策略)的名称和令牌重新生成哈希,以便对发送 ...