Nehe OpenGL lesson 8
lesson8 Blending: http://nehe.gamedev.net/tutorial/lessons_06__10/17010/ (也许须要特殊手段訪问)
There was a reason for the wait. A fellow programmer from the totally cool site Hypercosm, had asked if he could write a trial on blending. Lesson eight was going to be a blending tutorial anyways. So the timing was perfect! This tutorial expands on lesson
seven. lending is a very cool effect.. I hope you all enjoy the tutorial. the author of this tutorial is Tom Stanis. He's put a lot of error into the tutorial, so let him know what you think. Blending is not an easy topic to cover.
Most special effects in OpenGL rely on some type of blending. Blending is used to combine the colour of a given pixel that is about to be drawn with the pixel that is already on the screen. How the colours are combined is based on the alpha value of the
colours, and/or the blending function that is being used. Alpha is a 4th colour component usually specified at the end. In the past you have used GL_RGB to specify colour with 3 components. GL_RGBA can be used to specify alpha as well. In addition, we can
use glColor4f() instead of glColor3f().
Most people think of Alpha as how opaque a material is. An alpha value of 0.0 would mean that he material is completely transparent. A value of 1.0 would be totally opaque.
The Blending Equation: (Rs Sr + Rd Dr, Gs Sg + Gd Dg, Bs Sb + Bd Db, As Sa + Ad Da)
OpenGL will calculate the result of blending two pixels based on the above equation. The s and subscripts specify the source and destination pixels. The S and D components are the blend factors. The values indicate how you would like to blend the pixels.
The most common values for S and D are (As, As, As, As) (AKA source alpha) for S and (1, 1, 1, 1)-(As, As, As, As) (AKA one minus src alpha) for D. This will yield a blending equation that looks like this:
(Rs As + Rd (1 - As), Gs As + Gd(1 - As), Bs As + Bd (1 - As), As As + Ad(1 - As))
This equation will yield transparent / translucent style effects.
We enable blending just like everything else. Then we set the equation, and turn off depth buffer writing when drawing transparent objects, since we still want objects behind the translucent
shapes to be drawn. This isn't the proper way to blend, but most the time in simple projects it will work fine. Rui Martins Adds: The
correct way is to draw all the transparent (with alpha < 1.0) polys after you have drawn the entire scene, and to draw them in reverse depth order (farthest first). This is due to the fact that blending two polygons (1 and 2) in different order gives different
results, i.e. (assuming poly 1 is nearest to the viewer, the correct way would be to draw poly 2 first and then poly 1. If you look at it, like in reality, all the light comming from behind these two polys (which are transparent) has to pass poly 2 first and
then poly 1 before it reaches the eye of the viewer. You should SORT THE TRANSPARENT POLYGONS BY DEPTH and draw them AFTER THE ENTIRE SCENE HAS BEEN DRAWN, with the DEPTH BUFFER ENABLED, or you will get incorrect results. I know this sometimes is a pain, but
this is the correct way to do it.
We'll be using the code from the last tutorial. We start off by adding two new variables to the top of the code. I'll rewrite the entire
section of code for clarity.
接下来是代码:(已经编译通过: 对于MacBook来说,没有page键盘,所以使用了字母键盘A 、S两个按键替代)
// lesson 8 Blending
//
// The S and D components are the blend factors.
// (Rs Sr + Rd Dr, Gs Sg + Gd Dg, Bs Sb + Bd Db, As Sa + Ad Da)
//
// The most common values for S and D are (As, As, As, As) (AKA source alpha)
// for S and (1, 1, 1, 1) - (As, As, As, As) (AKA one minus src alpha) for D. This will
// yield a blending equation that looks like this:
// (Rs As + Rd (1 - As), Gs As + Gd (1 - As), Bs As + Bd (1 - As), As As + Ad (1 - As))
// This equation will yield transparent/translucent style effects.
//
// Linux
// #include <GL/glut.h>
// #include <GL/gl.h>
// #include <GL/glu.h> // Mac OS X
#include <OpenGL/OpenGL.h>
#include <GLUT/GLUT.h> #include <unistd.h>
#include <stdio.h>
#include <stdlib.h> /* ascii codes for various special keys */
#define ESCAPE 27
#define PAGE_UP 73
#define PAGE_DOWN 81
#define UP_ARROW 72
#define DOWN_ARROW 80
#define LEFT_ARROW 75
#define RIGHT_ARROW 77
#define KEY_A 97
#define KEY_S 115 /* The number of our GLUT window */
int window; /* lighting on/off (1 = on, 0 = off) */
int light; /* L pressed (1 = yes, 0 = no) */
int lp; /* F pressed (1 = yes, 0 = no) */
int fp; GLfloat xrot; // x rotation
GLfloat yrot; // y rotation
GLfloat xspeed; // x rotation speed
GLfloat yspeed; // y rotation speed GLfloat z = -5.0f; // depth into the screen. /* white ambient light at half intensity (rgba) */
GLfloat lightAmbient[] = { 0.5f, 0.5f, 0.5f, 1.0f }; /* supper bright, full intensity diffuse light. */
GLfloat lightDiffuse[] = { 1.0f, 1.0f, 1.0f, 1.0f }; /* position of light (x, y, z (position of light)) */
GLfloat lightPosition[] = { 0.0f, 0.0f, 2.0f, 1.0f }; GLuint filter; /* which filter to use (nearest/linear/mipmapped) */
GLuint texture[3]; /* storage for 3 textures. */
GLuint blend; /* turn blending on/off */ /* Image type - contains height, width, and data */
struct Image {
unsigned long sizeX;
unsigned long sizeY;
char *data;
};
typedef struct Image Image; /*
* getint and getshort are help functions to load bitmap byte by byte on
* SPARC platform.
* I've got them from xv bitmap load routine because the original bmp loader didn't work
* I've tried to change as less code as possible.
*/ static unsigned int getint(FILE *fp) {
int c, c1, c2, c3; // get 4 bytes
c = getc(fp);
c1 = getc(fp);
c2 = getc(fp);
c3 = getc(fp); return ((unsigned int) c) +
(((unsigned int) c1) << 8) +
(((unsigned int) c2) << 16) +
(((unsigned int) c3) << 24);
} static unsigned int getshort(FILE *fp) {
int c, c1; // get 2 bytes
c = getc(fp);
c1 = getc(fp); return ((unsigned int) c) + (((unsigned int) c1) << 8);
} int imageLoad(char *filename, Image *image) {
FILE *file;
unsigned long size; // size of the image in bytes.
unsigned long i; // standard counter.
unsigned short int planes; // number of planes in image (must be 1)
unsigned short int bpp; // number of bits per pixel (must be 24)
char temp; // used to convert bgr to rgb color. // make sure the file is there.
if ((file = fopen(filename, "rb")) == NULL) {
printf("File Not Fond: %s\n", filename);
return 0;
} // seek through the bmp header, up to the width/height;
fseek(file, 18, SEEK_CUR); // NO 100% errorchecking anymore!!!
// read the width
image->sizeX = getint(file);
printf("Width of %s: %lu\n", filename, image->sizeX); // read the height
image->sizeY = getint(file);
printf("Height of %s: %lu\n", filename, image->sizeY); // calcualte the size (assuming 24 bits or 3 bytes per pixel).
size = image->sizeX * image->sizeY * 3; // read the planes
planes = getshort(file);
if (planes != 1) {
printf("Planes from %s is not 1: %u\n", filename, planes);
return 0;
} // read the bpp
bpp = getshort(file);
if (bpp != 24) {
printf("Bpp from %s is not 24: %u\n", filename, bpp);
return 0;
} // seek past the rest of the bitmap header.
fseek(file, 24, SEEK_CUR); // read the data.
image->data = (char *) malloc(size);
if (image->data == NULL) {
printf("Error allocating memory for color-corrected image data");
return 0;
} if ((i = fread(image->data, size, 1, file)) != 1) {
printf("Error reading image data from %s.\n", filename);
return 0;
} for (i = 0; i < size; i += 3) {
temp = image->data[i];
image->data[i] = image->data[i+2];
image->data[i+2] = temp;
} return 1; // we're done.
} // Load Bitmaps and convert to texture
GLvoid loadGLTextures(GLvoid) {
Image *image1; // Load Texture // allocate space for texture.
image1 = (Image *) malloc(sizeof(Image));
if (image1 == NULL) {
printf("Error allocating space for image");
exit(0);
} if (!imageLoad("Data/lesson8/glass.bmp", image1)) {
exit(1);
} // Create Textures
glGenTextures(3, &texture[0]); // texture 1 (poor quality scaling)
glBindTexture(GL_TEXTURE_2D, texture[0]); // 2d texture (x and y size) // cheap scaling when image bigger than texture.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
// cheap scaling when image samlled than texture
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); // 2d texture level of detail 0 (normal), 3 components (red, green, blue), x size from
// image, y size from image, border 0 (normal) rgb color data, unsigned byte data,
// and finally the data itself.
glTexImage2D(GL_TEXTURE_2D, 0, 3, image1->sizeX, image1->sizeY, 0,
GL_RGB, GL_UNSIGNED_BYTE, image1->data); // texture 2 (linear scaling)
glBindTexture(GL_TEXTURE_2D, texture[1]); // 2d texture (x and y size)
// scale linearly when image bigger than texture.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// scale linearly when image smaller than texture.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, 3, image1->sizeX, image1->sizeY, 0,
GL_RGB, GL_UNSIGNED_BYTE, image1->data); // texture 3 (mipmapped scaling)
glBindTexture(GL_TEXTURE_2D, texture[2]); // 2d textuer (x and y size)
// scale linearly when image bigger than texture.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// scale linearly + mipmap when image smalled than texture.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, 3, image1->sizeX, image1->sizeY, 0,
GL_RGB, GL_UNSIGNED_BYTE, image1->data); // 2d texture 3 colors, width, height, RGB in that order, byte data, and the data.
gluBuild2DMipmaps(GL_TEXTURE_2D, 3, image1->sizeX, image1->sizeY, GL_RGB,
GL_UNSIGNED_BYTE, image1->data);
} /* A general OpenGL initialization function. Sets all of the initial parameters. */
GLvoid initGL(GLsizei width, GLsizei height) {
loadGLTextures();
glEnable(GL_TEXTURE_2D); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); // This Will Clear the background Color to black.
glClearDepth(1.0); // Enables clearing of the depth buffer.
glDepthFunc(GL_LESS); // The type of depth test to do.
glEnable(GL_DEPTH_TEST); // Enables depth testing.
glShadeModel(GL_SMOOTH); // Enables smooth color shading. glMatrixMode(GL_PROJECTION);
glLoadIdentity(); // Reset the projection matrix. // Calculate the aspect ratio of the window.
gluPerspective(45.0f, (GLfloat)width / (GLfloat)height, 0.1f, 100.0f); glMatrixMode(GL_MODELVIEW); // set up light number 1.
glLightfv(GL_LIGHT1, GL_AMBIENT, lightAmbient); // add lighting. (ambient)
glLightfv(GL_LIGHT1, GL_DIFFUSE, lightDiffuse); // add lighting. (diffuse)
glLightfv(GL_LIGHT1, GL_POSITION, lightPosition); // set light position.
glEnable(GL_LIGHT1); /* setup blending */
glBlendFunc(GL_SRC_ALPHA, GL_ONE); // Set the blending function for translucency.
glColor4f(1.0f, 1.0f, 1.0f, 0.5f);
} /* The function called when our window is resized (which
shouldn't happend, because we're fullscreen) */
GLvoid resizeGLScene(GLsizei width, GLsizei height) {
if (height == 0)
height = 1; // Reset the current viewport and perspective transformation
glViewport(0, 0, width, height); glMatrixMode(GL_PROJECTION);
glLoadIdentity(); gluPerspective(45.0f, (GLfloat)width / (GLfloat)height, 0.1f, 100.0f);
glMatrixMode(GL_MODELVIEW);
} /* The main drawing function. */
GLvoid drawGLScene(GLvoid)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity(); glTranslatef(0.0f, 0.0f, z); // move z units out from the screen. glRotatef(xrot, 1.0f, 0.0f, 0.0f); // Rotate on the X axis
glRotatef(yrot, 0.0f, 1.0f, 0.0f); // Rotate on the y axis. glBindTexture(GL_TEXTURE_2D, texture[filter]); // choose the texture to use. glBegin(GL_QUADS); // begin drawing a cube // Front Face (note that the texture's corner's have to match the quad's corners)
glNormal3f(0.0f, 0.0f, 1.0f); // front face points out of the screen on z.
glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); // bottom left
glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f, -1.0f, 1.0f); // bottom right
glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, 1.0f, 1.0f); // top right
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // top left. // Back face
glNormal3f(0.0f, 0.0f, -1.0f); // back face points into the screen on z
glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f); // bottom right
glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // top right
glTexCoord2f(0.0f, 1.0f); glVertex3f( 1.0f, 1.0f, -1.0f); // top left
glTexCoord2f(0.0f, 0.0f); glVertex3f( 1.0f, -1.0f, -1.0f); // bottom left. // Top Face
glNormal3f(0.0f, 1.0f, 0.0f); // top face points up on y
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // top left
glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // bottom left
glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f, 1.0f, 1.0f); // bottom right
glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, 1.0f, -1.0f); // top right // bottom face
glNormal3f(0.0f, -1.0f, 0.0f); // bottom face points down on y
glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, -1.0f, -1.0f); // top right
glTexCoord2f(0.0f, 1.0f); glVertex3f( 1.0f, -1.0f, -1.0f); // top left.
glTexCoord2f(0.0f, 0.0f); glVertex3f( 1.0f, -1.0f, 1.0f); // bottom left.
glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); // bottom right // right face
glNormal3f(1.0f, 0.0f, 0.0f); // right face points right on x.
glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f, -1.0f, -1.0f); // bottom right
glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, 1.0f, -1.0f); // top right
glTexCoord2f(0.0f, 1.0f); glVertex3f( 1.0f, 1.0f, 1.0f); // top left.
glTexCoord2f(0.0f, 0.0f); glVertex3f( 1.0f, -1.0f, 1.0f); // bottom left. // left face
glNormal3f(-1.0f, 0.0f, 0.0f); // left face points left on x.
glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f); // bottom left
glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); // bottom right
glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // top right
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // top left. glEnd(); xrot += xspeed;
yrot += yspeed; // since this is double buffered, swap the buffers to display what just got drawn.
glutSwapBuffers();
} /* The function called wheever a normal key is pressed. */
void keyPressed(unsigned char key, int x, int y) {
/* avoid thrashing this procedure */
usleep(100); printf("keypressed: %c, %d\n", key, key); switch (key) {
case ESCAPE: // kill everything.
glutDestroyWindow(window); // exit the program...normal termination.
exit(1);
break;
case 76:
case 108:
printf("L/l pressed is : %d\n", light);
light = light ? 0 : 1; // switch the current value of light, between 0 and 1.
printf("Light is now: %d\n", light);
if (!light) {
glDisable(GL_LIGHTING);
} else {
glEnable(GL_LIGHTING);
}
break; case 70:
case 102: // switch the filter.
printf("F/f pressed; filter is: %d\n", filter);
filter += 1;
if (filter > 2) {
filter = 0;
}
printf("Filter is now: %d\n", filter);
break; case 98:
case 66: // switch the blending.
printf("B/b pressed; blending is: %d\n", blend);
blend = blend ? 0 : 1;
printf("Blend is now: %d\n", blend);
if (!blend) {
glDisable(GL_BLEND); // Turn Blending Off
glEnable(GL_DEPTH_TEST); // Turn Depth Testing On
} else {
glEnable(GL_BLEND); // Turn Blending On
glDisable(GL_DEPTH_TEST); // Turn Depth Testing Off
}
break; case KEY_A: // Move the cube into the distance.
z -= 0.02f;
break; case KEY_S: // Move te cube closer.
z += 0.02f;
break; }
} /* The function called whenver a normal key is pressed. */
void specialKeyPressed(int key, int x, int y) {
/* avoid thrashing this procedure */
usleep(100); printf("specialKeyPressed: %c, %d\n", key, key); switch (key) {
case GLUT_KEY_UP: // decrease x rotation speed;
xspeed -= 0.01f;
break;
case GLUT_KEY_DOWN: // increase x rotation speed;
xspeed += 0.01f;
break; case GLUT_KEY_LEFT: // increase y rotation speed;
yspeed -= 0.01f;
break;
case GLUT_KEY_RIGHT: // decrease y rotation speed;
yspeed += 0.01f;
break; default:
break;
}
} int main(int argc, char **argv) {
glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH | GLUT_ALPHA); /* get a 640 x 480 window */
glutInitWindowSize(640, 480); /* the window starts at the upper left corner of the screen. */
glutInitWindowPosition(0, 0); /* Open a window */
window = glutCreateWindow("Jeff Molofee's GL Code Tutorial ... NeHe '99"); /* Register the function to do all our OpenGL drawing. */
glutDisplayFunc(&drawGLScene); /* Go fullscreen. This is as soon as possible. */
// glutFullScreen(); /* Event if there are no events, redraw our gl scene. */
glutIdleFunc(&drawGLScene); /* Register the function called when our window is resized. */
glutReshapeFunc(&resizeGLScene); /* Register the funciton called when the keyboard is pressed. */
glutKeyboardFunc(&keyPressed); /* Register the function called when special keys (arrows, page down, etc) a re pressed. */
glutSpecialFunc(&specialKeyPressed); /* Initialize our window */
initGL(640, 480); /* Start Event Processing Engine */
glutMainLoop(); return 0;
}
源码以及相关文件下载地址: http://download.csdn.net/detail/liyan223/7996143
Nehe OpenGL lesson 8的更多相关文章
- NeHe OpenGL教程 第四十八课:轨迹球
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- NeHe OpenGL教程 第四十七课:CG顶点脚本
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- NeHe OpenGL教程 第四十五课:顶点缓存
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- NeHe OpenGL教程 第四十六课:全屏反走样
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- NeHe OpenGL教程 第四十四课:3D光晕
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- NeHe OpenGL教程 第四十三课:FreeType库
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- NeHe OpenGL教程 第四十一课:体积雾气
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- NeHe OpenGL教程 第四十二课:多重视口
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- NeHe OpenGL教程 第四十课:绳子的模拟
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
随机推荐
- DRF视图集的路由设置
在使用DRF视图集时,往往需要配一大堆路由,例如: # views.py class DepartmentViewSet(ListModelMixin,CreateModelMixin,Retriev ...
- flask学习:如何从config里载入配置
代码如下: 1.main.py from flask import Flask from config import DevConfig app=Flask(__name__) app.config. ...
- LUA脚本中O(2)级素数查询
--================================================================================================== ...
- (一)mysql基础和安装mysql5.7
(1)数据库系统 RDS:关系型,oracle,mysql,mariaDB,percona server ,DB2 NoSQL:Redis,MongoDB,memcache (2)SQL语言:结构化查 ...
- 25,Spark Sort-Based Shuffle内幕彻底解密
一:为什么需要Sort-Based Shuffle? 1, Shuffle一般包含两个阶段任务: 第一部分:产生Shuffle数据的阶段(Map阶段,额外补充,需要实现ShuffleManager中 ...
- Vue 不使用Vuex的情况下进行状态管理
在封装自己的Vue ui库的时候,往往要封装一些比较复杂的组件,比如说table,form之类.这些组件由于功能繁杂,还涉及到子组件嵌套及通信,如果没有一套状态管理方案的话很容易导致代码难以阅读.难以 ...
- Nodejs微信与Bot framework通过Direct Line连接
背景 最近开发了一个Bot Framework的小工具,能够通过Luis分析出用户输入的文本,对文本中的StyleNo/FabricNo/TrimNo提取出来,并传入另一个小系统进行查询出结果,包括文 ...
- 初识sql注入及sqlmap
对于sql注入小白的我,上午在红黑联盟的网站上恶补了一下sql注入的基础知识,(走马观花)似乎明白sql注入是怎么一回事,也看了一些关于sqlmap的资料,再次记录一下吧 下面是关于sqlmap这个工 ...
- cvCalcOpticalFlowPyrLK的使用--基于高斯金字塔的稀疏光流特征集求解
void cvCalcOpticalFlowPyrLK( const CvArr* prev, const CvArr* curr, CvArr* prev_pyr, CvArr* curr_pyr, ...
- Codeforces 853C - Boredom
853C - Boredom 题意 给出一个矩阵,每行每列有且仅有一个点.每次询问一个子矩形,问这些点构成的矩形有多少个与给定的矩形相交(两个处于对角线上的点可以组成矩形). 分析 考虑矩形周围 8 ...