Description

Suppose that G is an undirected graph, and the value of stab is defined as follows: Among the expression,G -i, -j is the remainder after removing node i, node j and all edges that are directly relevant to the previous two nodes. cntCompent is the number of connected components of X independently.  Thus, given a certain undirected graph G, you are supposed to calculating the value of stab.
 

Input

The input will contain the description of several graphs. For each graph, the description consist of an integer N for the number of nodes, an integer M for the number of edges, and M pairs of integers for edges (3<=N,M<=5000).  Please note that the endpoints of edge is marked in the range of [0,N-1], and input cases ends with EOF.
 

Output

For each graph in the input, you should output the value of stab.

题目大意:给一个n个点m条边的无向图,删掉任意两个点,求最大联通分量数。

思路:枚举要被删掉的第一个点,然后用tarjan求剩下的每一个点被删掉后能增加的联通分量数。根据dfs的性质,有多少个分支的lowu ≥ pre[u],删掉u后就有多少个联通分量,删掉第一个点的时候剩下的块数加上删掉第二个点的联通分量数,就是删掉第一个点可以获得的最大连通分量数。要注意的是,如果要删掉的点是一个孤立的点,那么它的连通分量数反而会减少。时间复杂度为O(nm),12S可以承受。

代码(5000MS):

 #include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std; const int MAXN = ;
const int MAXE = MAXN * ; int head[MAXN];
int to[MAXE], next[MAXE];
int pre[MAXN], cut[MAXN];
int n, m, dfs_clock, ecnt, stab; void init() {
memset(head, , sizeof(head));
ecnt = ;
} void add_edge2(int u, int v) {
to[ecnt] = v; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; next[ecnt] = head[v]; head[v] = ecnt++;
} int del; int dfs(int u, int fa) {
int lowu = pre[u] = ++dfs_clock;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(v == del) continue;
if(!pre[v]) {
int lowv = dfs(v, u);
lowu = min(lowu, lowv);
if(lowv >= pre[u]) ++cut[u];
} else if(pre[v] < pre[u] && v != fa) {
lowu = min(lowu, pre[v]);
}
}
if(fa < ) --cut[u];
return lowu;
} int main() {
while(scanf("%d%d", &n, &m) != EOF) {
init();
while(m--) {
int a, b;
scanf("%d%d", &a, &b);
add_edge2(a, b);
}
stab = ;
for(int i = ; i < n; ++i) {
del = i;
int sum = ;
memset(pre, , sizeof(pre));
memset(cut, , sizeof(cut));
dfs_clock = ;
for(int u = ; u < n; ++u) {
if(u == i || pre[u]) continue;
++sum;
dfs(u, -);
}
int maxcut = -;
for(int u = ; u < n; ++u) if(u != i)
maxcut = max(maxcut, cut[u]);
stab = max(stab, sum + maxcut);
}
printf("%d\n", stab);
}
}

HDU 4587 TWO NODES(割点)(2013 ACM-ICPC南京赛区全国邀请赛)的更多相关文章

  1. HDU 4587 TWO NODES 割点

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4587 题意: 删除两个点,使连通块的数目最大化 题解: 枚举删除第一个点,然后对删除了第一个点的图跑 ...

  2. 2013 ACM/ICPC南京邀请赛B题(求割点扩展)

    题目链接:http://icpc.njust.edu.cn/Contest/194/Problem/B B - TWO NODES 时间限制: 10000 MS 内存限制: 65535 KB 问题描述 ...

  3. HDU 4571 Travel in time ★(2013 ACM/ICPC长沙邀请赛)

    [题意]给定N个点,每个点有一个停留所需的时间Ci,和停留能够获得的满意度Si,有M条边,每条边代表着两个点走动所需的时间ti,现在问在规定的T时间内从指定的一点S到E能够获得的最大的满意度是多少?要 ...

  4. HDU 4758——Walk Through Squares——2013 ACM/ICPC Asia Regional Nanjing Online

    与其说这是一次重温AC自动机+dp,倒不如说这是个坑,而且把队友给深坑了. 这个题目都没A得出来,我只觉得我以前的AC自动机的题目都白刷了——深坑啊. 题目的意思是给你两个串,每个串只含有R或者D,要 ...

  5. hdu 4751 Divide Groups bfs (2013 ACM/ICPC Asia Regional Nanjing Online 1004)

    SDUST的训练赛 当时死磕这个水题3个小时,也无心去搞其他的 按照题意,转换成无向图,预处理去掉单向的边,然后判断剩下的图能否构成两个无向完全图(ps一个完全图也行或是一个完全图+一个孤点) 代码是 ...

  6. 2013 ACM/ICPC 南京网络赛F题

    题意:给出一个4×4的点阵,连接相邻点可以构成一个九宫格,每个小格边长为1.从没有边的点阵开始,两人轮流向点阵中加边,如果加入的边构成了新的边长为1的小正方形,则加边的人得分.构成几个得几分,最终完成 ...

  7. 2018 ACM ICPC 南京赛区 酱油记

    Day 1: 早上6点起床打车去车站,似乎好久没有这么早起床过了,困到不行,在火车上睡啊睡就睡到了南京.南航离南京南站很近,地铁一站就到了,在学校里看到了体验坐直升机的活动,感觉很强.报道完之后去吃了 ...

  8. HDU 4587 TWO NODES 枚举+割点

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587 TWO NODES Time Limit: 24000/12000 MS (Java/Other ...

  9. hduoj 4710 Balls Rearrangement 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4710 Balls Rearrangement Time Limit: 6000/3000 MS (Java/Ot ...

随机推荐

  1. JavaScript 基础(四) 循环

    JavaScript的循环有两种,一种是for 循环,通过初始条件,结束条件和递增条件来循环执行语句块: var x = 0; var i; for(i=1; i <=10000; i++){ ...

  2. 【ppp-chap,pap,mp,mp-group】

    PPP链路端口验证(单){ PAP(明文): 主验证方: {local-user user_name:配置本地用户; password {simple||cipher}:配置验证密码; service ...

  3. web前端总结面试问题<经常遇到的手写代码>

    冒泡排序 var arr = [5,8,3,6,9] for(var i=0;i<arr.length;i++){ for(var j=i+1;j<arr.length;j++){ if( ...

  4. PHP命令行(CLI模式)

    CLI模式 CLI模式其实就是命令行运行模式,英文全称Command-Line Interface(命令行接口) $ php -h Usage: php [options] [-f] <file ...

  5. php 使用当前时间点进行时间范围查询

    /** * 判断是否是吃早饭时间 */ $nowtime = time(); $start = strtotime('8:30:00'); $end = strtotime('9:30:00'); i ...

  6. vi-vim常用命令

    vi-vim常用命令 1 简介 在UNIX系统中,创建和修改配置文件.shell脚本.初始化文件.编写程序都离不开VI. 1      vi[1]属于两个主要的UNIX规范:POSIX和单一UNIX规 ...

  7. Leecode刷题之旅-C语言/python-28.实现strstr()

    /* * @lc app=leetcode.cn id=28 lang=c * * [28] 实现strStr() * * https://leetcode-cn.com/problems/imple ...

  8. 渗透测试实验(i春秋 真的很简单)

    首先利用给的提示: 所以用户名是 ichunqiu 密码是adab29e084ff095ce3eb 可以确定一般密码都是md5的,但是这个20位 应该去掉ada b29e084ff095ce3e才是正 ...

  9. Kubernetes-创建集群(四)

    Kubernetes可以运行在多种平台,从笔记本到云服务商的虚拟机,再到机架上的裸机服务器.要创建一个Kubernetes集群,根据不同的场景需要做的也不尽相同,可能是运行一条命令,也可能是配置自己定 ...

  10. MongoDB从环境搭建到代码编程(Window 环境)

    本人开发环境: window Server 2008 , 64位系统 服务端 MongoDB下载地址:http://www.mongodb.org/downloads  (本人己下好的在百度网盘 : ...