Discrete Logging
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 5577   Accepted: 2494

Description

Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that

    B

L

 == N (mod P)

Input

Read several lines of input, each containing P,B,N separated by a space.

Output

For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".

Sample Input

5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111

Sample Output

0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587

Hint

The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states

   B

(P-1)

 == 1 (mod P)

for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m

   B

(-m)

 == B

(P-1-m)

 (mod P) .

Source

 
高次同余方程。   BL == N (mod P)求解最小的L
BSGS模板题目。
#include<cmath>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
struct Thash{
static const int MOD=;
static const int MAXN=1e6+;
int tot,head[MOD+],next[MAXN],h[MAXN],val[MAXN];
inline void clear(){tot=;memset(head,,sizeof head);}
inline void insert(int H,int VAL){
for(int i=head[H%MOD];i;i=next[i]) if(h[i]==H){val[i]=VAL;return ;}
h[++tot]=H;val[tot]=VAL;next[tot]=head[H%MOD];head[H%MOD]=tot;
}
inline int get(int H){
for(int i=head[H%MOD];i;i=next[i]) if(h[i]==H) return val[i];
return ;
}
}M;
inline ll fpow(ll a,ll p,ll mod){
int res=;
for(;p;p>>=,a=a*a%mod) if(p&) res=res*a%mod;
return res;
}
int BSGS(ll A,ll B,ll mod){
A%=mod;
if(!A){
if(!B) return ;
return -;
}
ll m=sqrt(mod)+,ni=fpow(A,mod-m-,mod);
ll t=,y=;
M.clear();
M.insert(,m+);
for(int i=;i<m;i++){
t=t*A%mod;
if(!M.get(t)) M.insert(t,i);
}
for(int i=;i<m;i++){
int u=M.get(B*y%mod);
if(u){
if(u==m+) u=;
return i*m+u;
}
y=y*ni%mod;
}
return -;
}
int main(){
int a,b,c,ans(-);
while(scanf("%d%d%d",&c,&a,&b)==){
ans=BSGS(a,b,c);
if(~ans) printf("%d\n",ans);
else puts("no solution");
}
return ;
}

POJ2417 Discrete Logging【BSGS】的更多相关文章

  1. POJ2417 Discrete Logging【BSGS】(模板题)

    <题目链接> 题目大意: P是素数,然后分别给你P,B,N三个数,然你求出满足这个式子的L的最小值 : BL== N (mod P). 解题分析: 这题是bsgs算法的模板题. #incl ...

  2. 【BSGS】BZOJ3239 Discrete Logging

    3239: Discrete Logging Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 729  Solved: 485[Submit][Statu ...

  3. BZOJ 3239 Discrete Logging(BSGS)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3239 [题目大意] 计算满足 Y^x ≡ Z ( mod P) 的最小非负整数 [题解 ...

  4. [POJ2417]Discrete Logging(指数级同余方程)

    Discrete Logging Given a prime P, 2 <= P < 2 31, an integer B, 2 <= B < P, and an intege ...

  5. bzoj 3239: Discrete Logging && 2480: Spoj3105 Mod【BSGS】

    都是BSGS的板子题 此时 \( 0 \leq x \leq p-1 \) 设 \( m=\left \lceil \sqrt{p} \right \rceil ,x=i*m-j \)这里-的作用是避 ...

  6. poj2417 Discrete Logging BSGS裸题

    给a^x == b (mod c)求满足的最小正整数x, 用BSGS求,令m=ceil(sqrt(m)),x=im-j,那么a^(im)=ba^j%p;, 我们先枚举j求出所有的ba^j%p,1< ...

  7. POJ2417 Discrete Logging | A,C互质的bsgs算法

    题目: 给出A,B,C 求最小的x使得Ax=B  (mod C) 题解: bsgs算法的模板题 bsgs 全称:Baby-step giant-step 把这种问题的规模降低到了sqrt(n)级别 首 ...

  8. BZOJ2242 [SDOI2011]计算器 【BSGS】

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 4741  Solved: 1796 [Submit][Sta ...

  9. POJ2417 Discrete Logging

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

随机推荐

  1. [Flutter] Creating & Updating State in a Flutter Application

    To create a Stateful widget: 1. Create a StatefulWidget 2. Create a State class SGreeting extends St ...

  2. openerp编辑与非编辑下隐藏按钮的方法

    在form表单中,有些控件希望在编辑的时候显示,非编辑时不显示,如hr模块的员工表单,在非编辑模式中,姓名的title不显示,而在编辑模式中显示出来.我们可以在xml文件中给控件赋属性值,class= ...

  3. CentOS6.5内核升级到linux 3.12.17教程

    环境: 系统硬件:vmware vsphere (CPU:2*4核,内存2G) 系统版本:Linux centos 2.6.32-431.el6.x86_64(Centos-6.5-x86_64-mi ...

  4. Ruby 第一行代码

    main.rb #=猜数字 #这是一个简单的猜数字游戏 #==玩法 #随机生成一个『1,100』的自然数.会提示大小 class GuessNum def playGame wrongInt = tr ...

  5. Refactoring之——代码的坏味道(四)过长参数列

    1.1.4 Long Parameter List(过长参数列) 特征:一个方法有超过三四个的参数. 问题原因: 过长参数列可能是将多个算法并到一个函数中时发生的.函数中的入参可以用来控制最终选用哪个 ...

  6. shell脚本循环嵌套

    嵌套循环 在循环语句内使用任意类型的命令,包括其他循环命令,叫做嵌套循环.因为是在迭代中迭代,需要注意变量的使用以及程序的效率问题. 下面举一个for循环嵌套for循环的例子: wangsx@SC-2 ...

  7. 同时安装office2016与visio2016的实现过程

    visio 2016安装问题 同时安装office2016与visio2016的实现过程 visio2016  but failed

  8. CMD常用功能

    1.导出文件目录树状结构 命令:“tree>file.txt /f”

  9. Repository、IUnitOfWork 和 IDbContext

    1)领域层不应该直接依赖于仓储实现:如果领域层依赖于仓储实现,一是技术绑定太紧密,二是仓储要对领域对象作操作,会造成循环依赖. 2)将接口定义在领域层,减少技术架构依赖,应用层或领域层要使用某个仓储实 ...

  10. 深入PHP中慎用双等于(==)的详解

    PHP比较运算符出现的频率实在是太高了,尤其是 ==if(a == b){// do something}但是,你真的掌握了 == 了吗?细节很重要!来看下面的代码,说出你认为正确的答案var_dum ...