LeetCode 688. Knight Probability in Chessboard
原题链接在这里:https://leetcode.com/problems/knight-probability-in-chessboard/description/
题目:
On an N
xN
chessboard, a knight starts at the r
-th row and c
-th column and attempts to make exactly K
moves. The rows and columns are 0 indexed, so the top-left square is (0, 0)
, and the bottom-right square is (N-1, N-1)
.
A chess knight has 8 possible moves it can make, as illustrated below. Each move is two squares in a cardinal direction, then one square in an orthogonal direction.
Each time the knight is to move, it chooses one of eight possible moves uniformly at random (even if the piece would go off the chessboard) and moves there.
The knight continues moving until it has made exactly K
moves or has moved off the chessboard. Return the probability that the knight remains on the board after it has stopped moving.
Example:
Input: 3, 2, 0, 0
Output: 0.0625
Explanation: There are two moves (to (1,2), (2,1)) that will keep the knight on the board.
From each of those positions, there are also two moves that will keep the knight on the board.
The total probability the knight stays on the board is 0.0625.
Note:
N
will be between 1 and 25.K
will be between 0 and 100.- The knight always initially starts on the board.
题解:
类似Out of Boundary Paths.
DP问题. 求最后在board上的概率. 反过来想,走完K步棋子在board上的哪个位置呢. 反过来走, 看board上所有位置走完K步后能到初始位置(r,c)的数目和.
储存历史信息是走到当前这步时棋盘上能走到每个位置的不同走法.
递推时, 向所有方向移动, 若是还在board上就把自己的走法加到新位置的走法上.
初始化所有位置只有1种走法.
答案K步之后到初始位置的走法除以Math.pow(8,K).
Time Complexity: O(K*N^2).
Space: O(N^2).
AC Java:
class Solution {
public double knightProbability(int N, int K, int r, int c) {
int [][] moves = {{1,2},{1,-2},{2,1},{2,-1},{-1,2},{-1,-2},{-2,1},{-2,-1}};
double [][] dp0 = new double[N][N];
for(double [] row : dp0){
Arrays.fill(row, 1);
} for(int step = 0; step<K; step++){
double [][] dp1 = new double[N][N];
for(int i = 0; i<N; i++){
for(int j = 0; j<N; j++){
for(int [] move : moves){
int row = i + move[0];
int col = j + move[1];
if(isIllegal(row, col, N)){
dp1[row][col] += dp0[i][j];
}
}
}
}
dp0 = dp1;
}
return dp0[r][c]/Math.pow(8,K);
} private boolean isIllegal(int row, int col, int len){
return row>=0 && row<len && col>=0 && col<len;
}
}
LeetCode 688. Knight Probability in Chessboard的更多相关文章
- LeetCode——688. Knight Probability in Chessboard
一.题目链接:https://leetcode.com/problems/knight-probability-in-chessboard/ 二.题目大意: 给定一个N*N的棋盘和一个初始坐标值(r, ...
- leetcode 576. Out of Boundary Paths 、688. Knight Probability in Chessboard
576. Out of Boundary Paths 给你一个棋盘,并放一个东西在一个起始位置,上.下.左.右移动,移动n次,一共有多少种可能移出这个棋盘 https://www.cnblogs.co ...
- 【leetcode】688. Knight Probability in Chessboard
题目如下: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...
- 【LeetCode】688. Knight Probability in Chessboard 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/knight-pr ...
- 688. Knight Probability in Chessboard棋子留在棋盘上的概率
[抄题]: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...
- 688. Knight Probability in Chessboard
On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...
- [LeetCode] Knight Probability in Chessboard 棋盘上骑士的可能性
On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...
- [Swift]LeetCode688. “马”在棋盘上的概率 | Knight Probability in Chessboard
On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...
- Knight Probability in Chessboard
2018-07-14 09:57:59 问题描述: 问题求解: 本题本质上是个挺模板的题目.本质是一个求最后每个落点的数目,用总的数目来除有所可能生成的可能性.这种计数的问题可以使用动态规划来进行解决 ...
随机推荐
- Python操作SQLAlchemy
Mysql环境: MySQL 一.概述什么是数据库 ? 答:数据的仓库,如:在ATM的示例中我们创建了一个 db 目录,称其为数据库 什么是 MySQL.Oracle.SQLite.Access.MS ...
- Loadrunder脚本篇——web_custom_request做接口测试
一.POST + JSON格式参数 例: web_custom_request("create", "URL=http://xxx.xxx.x.xx:1600/ditui ...
- 如何选择合适的Linux系统进行桌面程序开发?
32 or 64 ? 众所周知,64位的Windows系统可以近乎完美地运行32位的应用程序,微软出于商业考虑做了这样一个兼容层.而Linux系统则划分的很清楚,默认情况下64位的Linux系统无法运 ...
- java DateTimeUtil 日期工具类
package com.sicdt.library.core.utils; import java.sql.Timestamp; import java.text.DateFormat; import ...
- CMD 删除脚本
CMD 删除脚本 forfiles /p D:\BACKUP\WindowsImageBackup /s /m *.* /d -14 /c "cmd /c del @file"; ...
- 黑色CSS3立体动画菜单
在线演示 本地下载
- RHCE学习笔记 管理1 (第一、二章)
第一章 命令行访问 1.Ctrl+alt+F2~F6 切到虚拟控制台,ctrl+alt+F1 回到图形界面 2.格式 : 命令 选项 参数 [] 为可选项目 ...表示该项目任意 ...
- thinkphp URL 模式
兼容ThinkPHP三种url模式的nginx rewrite location / { root /var/www; index index.html index.htm index.php; if ...
- awk实现替换字符串中指定位置之间的内容
# 显示第xx行的第yy列的一个字符sed -n 'xx,xxp' file | awk '{print substr($0,yy,1);}' # 修改第xx行的第yy列的一个字符Chr,并保存为新文 ...
- 【bzoj3747】Kinoman[POI2015](线段树)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3747 对于这种题,考虑固定区间的右端点为r,设区间左端点为l能取得的好看值总和为a[l] ...