原题链接在这里:https://leetcode.com/problems/knight-probability-in-chessboard/description/

题目:

On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K moves. The rows and columns are 0 indexed, so the top-left square is (0, 0), and the bottom-right square is (N-1, N-1).

A chess knight has 8 possible moves it can make, as illustrated below. Each move is two squares in a cardinal direction, then one square in an orthogonal direction.

Each time the knight is to move, it chooses one of eight possible moves uniformly at random (even if the piece would go off the chessboard) and moves there.

The knight continues moving until it has made exactly K moves or has moved off the chessboard. Return the probability that the knight remains on the board after it has stopped moving.

Example:

Input: 3, 2, 0, 0
Output: 0.0625
Explanation: There are two moves (to (1,2), (2,1)) that will keep the knight on the board.
From each of those positions, there are also two moves that will keep the knight on the board.
The total probability the knight stays on the board is 0.0625.

Note:

  • N will be between 1 and 25.
  • K will be between 0 and 100.
  • The knight always initially starts on the board.

题解:
类似Out of Boundary Paths.

DP问题. 求最后在board上的概率. 反过来想,走完K步棋子在board上的哪个位置呢. 反过来走, 看board上所有位置走完K步后能到初始位置(r,c)的数目和.

储存历史信息是走到当前这步时棋盘上能走到每个位置的不同走法.

递推时, 向所有方向移动, 若是还在board上就把自己的走法加到新位置的走法上.

初始化所有位置只有1种走法.

答案K步之后到初始位置的走法除以Math.pow(8,K).

Time Complexity: O(K*N^2).

Space: O(N^2).

AC Java:

 class Solution {
public double knightProbability(int N, int K, int r, int c) {
int [][] moves = {{1,2},{1,-2},{2,1},{2,-1},{-1,2},{-1,-2},{-2,1},{-2,-1}};
double [][] dp0 = new double[N][N];
for(double [] row : dp0){
Arrays.fill(row, 1);
} for(int step = 0; step<K; step++){
double [][] dp1 = new double[N][N];
for(int i = 0; i<N; i++){
for(int j = 0; j<N; j++){
for(int [] move : moves){
int row = i + move[0];
int col = j + move[1];
if(isIllegal(row, col, N)){
dp1[row][col] += dp0[i][j];
}
}
}
}
dp0 = dp1;
}
return dp0[r][c]/Math.pow(8,K);
} private boolean isIllegal(int row, int col, int len){
return row>=0 && row<len && col>=0 && col<len;
}
}

LeetCode 688. Knight Probability in Chessboard的更多相关文章

  1. LeetCode——688. Knight Probability in Chessboard

    一.题目链接:https://leetcode.com/problems/knight-probability-in-chessboard/ 二.题目大意: 给定一个N*N的棋盘和一个初始坐标值(r, ...

  2. leetcode 576. Out of Boundary Paths 、688. Knight Probability in Chessboard

    576. Out of Boundary Paths 给你一个棋盘,并放一个东西在一个起始位置,上.下.左.右移动,移动n次,一共有多少种可能移出这个棋盘 https://www.cnblogs.co ...

  3. 【leetcode】688. Knight Probability in Chessboard

    题目如下: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...

  4. 【LeetCode】688. Knight Probability in Chessboard 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/knight-pr ...

  5. 688. Knight Probability in Chessboard棋子留在棋盘上的概率

    [抄题]: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...

  6. 688. Knight Probability in Chessboard

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  7. [LeetCode] Knight Probability in Chessboard 棋盘上骑士的可能性

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  8. [Swift]LeetCode688. “马”在棋盘上的概率 | Knight Probability in Chessboard

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  9. Knight Probability in Chessboard

    2018-07-14 09:57:59 问题描述: 问题求解: 本题本质上是个挺模板的题目.本质是一个求最后每个落点的数目,用总的数目来除有所可能生成的可能性.这种计数的问题可以使用动态规划来进行解决 ...

随机推荐

  1. google黑客语法总结

    搜索也是一门艺术 说起Google,可谓无人不知无人不晓,其强大的搜索功能,可以让你在瞬间找到你想要的一切.不过对于普通的用户而言,Google是一个强大的搜索引擎:而对于黑客而言,则可能是一款绝佳的 ...

  2. loadrunder之脚本篇——脚本基础知识和常用操作

    1)编码工具设置 自动补全输入Tools->General Options->Environment->Auto complete word 显示功能语法Tools->Genr ...

  3. Java字段初始化规律:

    Java字段初始化规律: Java进行初始化的地方有两个,初始化块和构造函数,其中初始化块又分为静态初始化块和实例初始化块(以上程序为实例初始化块).静态初始化块是类中由static修饰的初始化块,实 ...

  4. 树莓派连接DHT11温湿度传感器(python)

    介绍 DHT11作为一个廉价配件,同时包含了温度.湿度传感器,而且,编码使用也非常简单. 本文介绍如果在树莓派中使用 DHT11,代码是Python.如果有任何疑问,欢迎在下面留言. 接线 VCC接5 ...

  5. js实现给一个数组监听

    $.when.apply(null, table).done(callback); table=[]是个数组,用上$.when.apply就可以监听完成后执行callback 方法 callback就 ...

  6. 记录python面试题

    闲来无事,记录一下曾经以及深刻的面试题 记录一下我记忆比较深的面试题,以后若用到python相关还能细细把玩 搜狐面试题: 一.写一个缓存优化策略 解答:这个题主要考察对lru_cache的理解,所以 ...

  7. cocos2dx打飞机项目笔记三:HeroLayer类和坐标系

    HeroLayer类主要是处理hero的一些相关东西,以及调用bulletLayer的一些方法,因为子弹是附属于hero的~~ HeroLayer 类的成员如下: class HeroLayer : ...

  8. QFile操作文件

    1.构造QFile对象 QFile file("C:\a.txt"); 或者 QFile *file = new QFile("C:\a.txt"); 2.设置 ...

  9. 【P1714】切蛋糕(单调队列)

    实在不明白难度等级,难不成前缀和是个很变态的东西? 说白了就是单调队列裸题,都没加什么别的东西,就是一个前缀和的计算,然而这个题也不是要用它优化,而是必须这么做啊. #include<iostr ...

  10. WINSOCK 传送文件

    SERVER: // send_server.cpp : Defines the entry point for the console application. // #include " ...