[Contest20180405]抑制「超我」
古明地恋(koishi)和计算器(calculator)是好朋友。
恋恋有一个神奇的计算器,可以进行两个数在模$2^n$意义下的加法运算。计算器上有一个寄存器,一开始寄存器中的数为$0$,每当恋恋输入一个数,计算器就会把寄存器中的值与输入的数相加,并存在寄存器中(覆盖原有的值)。
计算器内部采用二进制进行数的存储,两个数相加时,它会按照二进制加法的规则,从低位到高位依次相加、进位,并舍弃掉最后多出来的第$n+1$位。由于年久失修,计算器上的某些数位出了点小故障,这些数位上不会发生进位。也就是说,在加法的过程中,如果这个数位上的值超过了$1$,它会对$2$取模,而下一个数位却不会$+1$(显然第$n$位是否故障并没有多大区别,为了方便我们钦定它一定故障)。
恋恋会不停地向计算器输入数字。每次,她会在$[0,2^n)$的范围内随机选取一个数进行输入。这里每个数被选取的概率与它的数值大小成正比,也就是说,$x$被选中的概率为$\begin{align*}\dfrac x{\sum\limits_{i=0}^{2^n−1}i}\end{align*}$。每当恋恋输入完一个数,她会有$\dfrac{998244354−p}{998244354}$的概率感到厌倦,否则她会继续重复这一过程,直到她厌倦为止。现在,恋恋想知道在她感到厌倦之后,寄存器中的数的期望值是多少,答案对$998244353$取模。
每一段$0\cdots01$互不影响,可以分开计算答案,假设当前要计算一段长度为$m$的区间的答案
设$p_i$表示输入$i$的概率,构造多项式$\begin{align*}A(x)=\sum\limits_{i=0}^\infty p_ix^i\end{align*}$,那么$[x^k]\begin{align*}\sum\limits_{i=0}^\infty(1-p)p^iA^{i+1}(x)\end{align*}$就是最后和为$k$的概率(枚举恋恋在第$i$次加法时停止)注意这里的下标要模$2^m$,也就是说多项式乘法是循环卷积
等比数列求和一下,我们得到答案为$[x^k]\dfrac{(1-p)A(x)}{1-pA(x)}$,因为是循环卷积,所以直接用点值计算是可行的,就不用写多项式求逆了
#include<stdio.h> #include<string.h> const int mod=998244353; typedef long long ll; int mul(int a,int b){return a*(ll)b%mod;} int ad(int a,int b){return(a+b)%mod;} int de(int a,int b){return(a-b)%mod;} void inc(int&a,int b){a=ad(a,b);} int pow(int a,int b){ int s=1; while(b){ if(b&1)s=mul(s,a); a=mul(a,a); b>>=1; } return s; } int rev[1100010],N,iN; void pre(int n){ int i,k; for(N=1,k=0;N<n;N<<=1)k++; for(i=0;i<N;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1)); iN=pow(N,mod-2); } void swap(int&a,int&b){a^=b^=a^=b;} void ntt(int*a,int on){ int i,j,k,t,w,wn; for(i=0;i<N;i++){ if(i<rev[i])swap(a[i],a[rev[i]]); } for(i=2;i<=N;i<<=1){ wn=pow(3,(on==1)?(mod-1)/i:(mod-1-(mod-1)/i)); for(j=0;j<N;j+=i){ w=1; for(k=0;k<i>>1;k++){ t=mul(w,a[i/2+j+k]); a[i/2+j+k]=de(a[j+k],t); inc(a[j+k],t); w=mul(w,wn); } } } if(on==-1){ for(i=0;i<N;i++)a[i]=mul(a[i],iN); } } int f[1100010]; char s[30]; int main(){ int n,p,i,j,las,al,rl,ans; scanf("%d%d%s",&n,&p,s+1); las=0; al=(1<<n)-1; rl=pow((al+1)*(ll)al/2%mod,mod-2); ans=0; for(i=1;i<=n;i++){ if(s[i]=='1'){ pre(1<<(i-las)); memset(f,0,sizeof(f)); for(j=0;j<=al;j++)inc(f[(j&((1<<i)-1))>>las],mul(j,rl)); ntt(f,1); for(j=0;j<N;j++)f[j]=mul(mul(1-p,f[j]),pow(1-mul(p,f[j]),mod-2)); ntt(f,-1); for(j=0;j<N;j++)inc(ans,mul(j<<las,f[j])); las=i; } } printf("%d",(ans+mod)%mod); }
[Contest20180405]抑制「超我」的更多相关文章
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- 「译」JUnit 5 系列:条件测试
原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...
- 「译」JUnit 5 系列:扩展模型(Extension Model)
原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...
- JavaScript OOP 之「创建对象」
工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...
- 「C++」理解智能指针
维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...
- 「JavaScript」四种跨域方式详解
超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSON ...
- 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management
写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...
- 「2014-3-18」multi-pattern string match using aho-corasick
我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博 ...
- 「2014-3-17」C pointer again …
记录一个比较基础的东东-- C 语言的指针,一直让人又爱又恨,爱它的人觉得它既灵活又强大,恨它的人觉得它太过于灵活太过于强大以至于容易将人绕晕.最早接触 C 语言,还是在刚进入大学的时候,算起来有好些 ...
随机推荐
- ionic3自定义图标
http://blog.csdn.net/qq993284758/article/details/78107412
- CentOS 6.4安装配置ldap
CentOS 6.5安装配置ldap 时间:2015-07-14 00:54来源:blog.51cto.com 作者:"ly36843运维" 博客 举报 点击:274次 一.安装l ...
- ansible 批量修改root密码
[root@sz_fy_virt_encrypt_33_239 fetch]# cat /opt/passwd.yml - hosts: web vars: path: /home/opsadmin ...
- JAVA多线程---好的博客资源收集
个人笔记,备忘 1.http://blog.csdn.net/column/details/concurrency.html 兰亭风雨的专栏 2.http://lavasoft.blog.51c ...
- React 入门小结
前段时间用 Ant Design 做了一个项目,由于之前没有 React 基础,对于 ES6 也是一知半解,所以也是一边开发一边学习,好不容易把项目完成了,现在终于有时间沉下心来从头开始好好学一下 R ...
- 转:RBAC权限控制
名词解释: RBAC:Role-Based Access Control,基于角色的访问控制 关键词: RBAC,Java Shiro,Spring Security, 一. RBAC 要解决 ...
- Dom4j解析语音数据XML文档(注意ArrayList多次添加对象,会导致覆盖之前的对象)
今天做的一个用dom4j解析声音文本的xml文档时,我用ArrayList来存储每一个Item的信息,要注意ArrayList多次添加对象,会导致覆盖之前的对象:解决方案是在最后将对象添加入Array ...
- RPC-Thrift(四)
Client Thrift客户端有两种:同步客户端和异步客户端. 同步客户端 同步客户端比较简单,以RPC-Thrift(一)中的的例子为基础进行研究源码,先看一下类图. TServiceClient ...
- Nios II 中的缓存和内存数据的读写
nios 使用地址中31bit来表示访问是否bypass cache.如果bit 31=0 表示不bypass cache,即使用cache里的数据:如果bit 31=1表示bypass cache, ...
- 汕头市队赛 SRM 06 B 起伏的排名
B 起伏的排名 SRM 06 背景&&描述 天才麻将少女KPM立志要在日麻界闯出一番名堂. 在上个星期她打了n场麻将,每场麻将都有n名玩家.KPM自然记得自己的n次排名. ...