283. Move Zeroes【easy】
283. Move Zeroes【easy】
Given an array nums
, write a function to move all 0
's to the end of it while maintaining the relative order of the non-zero elements.
For example, given nums = [0, 1, 0, 3, 12]
, after calling your function, nums
should be [1, 3, 12, 0, 0]
.
Note:
- You must do this in-place without making a copy of the array.
- Minimize the total number of operations.
Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.
解法一:
class Solution {
public:
void moveZeroes(vector<int>& nums) {
int i = , j = ;
while (i < nums.size()) {
if (nums[i] != ) {
nums[j++] = nums[i++];
}
else
{
++i;
}
} while (j < nums.size()) {
nums[j++] = ;
}
}
};
双指针
解法二:
This is a 2 pointer approach. The fast pointer which is denoted by variable "cur" does the job of processing new elements. If the newly found element is not a 0, we record it just after the last found non-0 element. The position of last found non-0 element is denoted by the slow pointer "lastNonZeroFoundAt" variable. As we keep finding new non-0 elements, we just overwrite them at the "lastNonZeroFoundAt + 1" 'th index. This overwrite will not result in any loss of data because we already processed what was there(if it were non-0,it already is now written at it's corresponding index,or if it were 0 it will be handled later in time).
After the "cur" index reaches the end of array, we now know that all the non-0 elements have been moved to beginning of array in their original order. Now comes the time to fulfil other requirement, "Move all 0's to the end". We now simply need to fill all the indexes after the "lastNonZeroFoundAt" index with 0.
void moveZeroes(vector<int>& nums) {
int lastNonZeroFoundAt = ;
// If the current element is not 0, then we need to
// append it just in front of last non 0 element we found.
for (int i = ; i < nums.size(); i++) {
if (nums[i] != ) {
nums[lastNonZeroFoundAt++] = nums[i];
}
}
// After we have finished processing new elements,
// all the non-zero elements are already at beginning of array.
// We just need to fill remaining array with 0's.
for (int i = lastNonZeroFoundAt; i < nums.size(); i++) {
nums[i] = ;
}
}
Complexity Analysis
Space Complexity : O(1)O(1). Only constant space is used.
Time Complexity: O(n)O(n). However, the total number of operations are still sub-optimal. The total operations (array writes) that code does is nn (Total number of elements).
解法三:
The total number of operations of the previous approach is sub-optimal. For example, the array which has all (except last) leading zeroes: [0, 0, 0, ..., 0, 1].How many write operations to the array? For the previous approach, it writes 0's n-1n−1 times, which is not necessary. We could have instead written just once. How? ..... By only fixing the non-0 element,i.e., 1.
The optimal approach is again a subtle extension of above solution. A simple realization is if the current element is non-0, its' correct position can at best be it's current position or a position earlier. If it's the latter one, the current position will be eventually occupied by a non-0 ,or a 0, which lies at a index greater than 'cur' index. We fill the current position by 0 right away,so that unlike the previous solution, we don't need to come back here in next iteration.
In other words, the code will maintain the following invariant:
All elements before the slow pointer (lastNonZeroFoundAt) are non-zeroes.
All elements between the current and slow pointer are zeroes.
Therefore, when we encounter a non-zero element, we need to swap elements pointed by current and slow pointer, then advance both pointers. If it's zero element, we just advance current pointer.
With this invariant in-place, it's easy to see that the algorithm will work.
void moveZeroes(vector<int>& nums) {
for (int lastNonZeroFoundAt = , cur = ; cur < nums.size(); cur++) {
if (nums[cur] != ) {
swap(nums[lastNonZeroFoundAt++], nums[cur]);
}
}
}
Complexity Analysis
Space Complexity : O(1)O(1). Only constant space is used.
Time Complexity: O(n)O(n). However, the total number of operations are optimal. The total operations (array writes) that code does is Number of non-0 elements.This gives us a much better best-case (when most of the elements are 0) complexity than last solution. However, the worst-case (when all elements are non-0) complexity for both the algorithms is same.
上面解法仍有优化空间,对于下标不同的时候才交换
class Solution {
public:
void moveZeroes(vector<int>& nums) {
for (int i = , j = ; i < nums.size(); ++i) {
if (nums[i] != ) {
if (i != j) {
swap(nums[j], nums[i]);
}
++j;
}
}
}
};
解法二、三均参考自solution
283. Move Zeroes【easy】的更多相关文章
- 【leetcode】283. Move Zeroes
problem 283. Move Zeroes solution 先把非零元素移到数组前面,其余补零即可. class Solution { public: void moveZeroes(vect ...
- LeetCode Javascript实现 283. Move Zeroes 349. Intersection of Two Arrays 237. Delete Node in a Linked List
283. Move Zeroes var moveZeroes = function(nums) { var num1=0,num2=1; while(num1!=num2){ nums.forEac ...
- 27. Remove Element【easy】
27. Remove Element[easy] Given an array and a value, remove all instances of that value in place and ...
- 657. Judge Route Circle【easy】
657. Judge Route Circle[easy] Initially, there is a Robot at position (0, 0). Given a sequence of it ...
- 557. Reverse Words in a String III【easy】
557. Reverse Words in a String III[easy] Given a string, you need to reverse the order of characters ...
- 283. Move Zeroes(C++)
283. Move Zeroes Given an array nums, write a function to move all 0's to the end of it while mainta ...
- 170. Two Sum III - Data structure design【easy】
170. Two Sum III - Data structure design[easy] Design and implement a TwoSum class. It should suppor ...
- 160. Intersection of Two Linked Lists【easy】
160. Intersection of Two Linked Lists[easy] Write a program to find the node at which the intersecti ...
- 206. Reverse Linked List【easy】
206. Reverse Linked List[easy] Reverse a singly linked list. Hint: A linked list can be reversed eit ...
随机推荐
- POJ 2115 C Looooops(Exgcd)
[题目链接] http://poj.org/problem?id=2115 [题目大意] 求for (variable = A; variable != B; variable += C)的循环次数, ...
- 【动态规划】【记忆化搜索】CODEVS 3415 最小和 CodeVS原创
f(l,r,i)表示第i段截第l位到第r位时,当前已经得到的价格最小值,可以很显然地发现,这个是没有后效性的,因为对之后截得的段都不造成影响. 注意水彩笔数=1的特判. 递归枚举当前段的r求解(∵l是 ...
- Problem S: 零起点学算法14——三位数反转
#include<stdio.h> #include<stdlib.h> int main() { int a,b,c,s; scanf("%d",& ...
- oracle 中的%type,%rowtype
oracle 中的%type,%rowtype1.使用%TYPE 在许多情况下,PL/SQL变量可以用来存储在数据库表中的数据.在这种情况下,变量应该拥有与表列相同的类型.例如,students表的f ...
- 图解http读书笔记
以前对HTTP协议一知半解,一直不清楚前端需要对于HTTP了解到什么程度,知道接触的东西多了,对于性能优化.服务端的配合和学习中也渐渐了解到了HTTP基础的重要性,看了一些大神对HTTP书籍的推荐,也 ...
- 【jQuery】jquery中 使用$('#parentUid').attr(parentUid);报错jquery-1.11.3.min.js:5 Uncaught TypeError: Cannot read property 'nodeType' of undefined
jquery中 使用$('#parentUid').attr(parentUid);报错jquery-1.11.3.min.js:5 Uncaught TypeError: Cannot read p ...
- Kingdee Apusic 中间件有关资料
Kingdee Apusic 中间件有关资料: 1.官方网站:http://www.apusic.com 2.资料目录:http://www.apusic.com/dist 3.Apusic 8 资料 ...
- hibernate CascadeType属性
CascadeType.PERSIST 只有A类新增时,会级联B对象新增.若B对象在数据库存(跟新)在则抛异常(让B变为持久态) : 级联保存,当调用了Persist() 方法,会级联保存相应的数据 ...
- javascript函数,构造函数。js对象和json的区别。js中this指向问题
函数是由事件驱动的或者当它被调用时执行的可重复使用的代码块.好处:在出现大量程序相同的时候,可以封装为一个function,这样只用调用一次,就能执行很多语句.(1)语法:函数就是包裹在花括号中的代码 ...
- npm install -S -D -g 有什么区别
npm install module_name -S 即 npm install module_name --save 写入dependencies npm install modu ...