[poj 3252]数位dp前导0的处理
通过这个题对于数位dp中前导0的处理有了新的认识。
题目链接:http://poj.org/problem?id=3252
//http://poj.org/problem?id=3252 #include<cstdio>
#include<cstring>
using namespace std; int b[];
int dp[][][]; int dfs(int pos,int preok,int more,int pre0)
{
if (pos==-) return more==?:;
if (preok && dp[pos][more+][pre0]!=-) return dp[pos][more+][pre0];
int up=preok?:b[pos];
int ans=;
for (int i=;i<=up;i++)
{
if (i<b[pos]||preok) ans+=dfs(pos-,,more+(i==?:pre0-),pre0&&!i);
else ans+=dfs(pos-,,more+(i==?:pre0-),pre0&&!i);
}
if (preok) dp[pos][more+][pre0]=ans;
//printf("pos=%d preok=%d more=%d pre0=%d ans=%d\n",pos,preok,more,pre0,ans);
return ans;
} int solve(int n)
{
if (n<) return ;
int cnt=;
int now=n;
do{
b[cnt]=now%;
now/=;
cnt++;
}while (now);
int ans=;
for (int i=;i<=cnt;i++)
ans+=dfs(cnt-,,i,);
return ans;
} int main()
{
int n,m;
memset(dp,-,sizeof(dp));
while (~scanf("%d%d",&n,&m))
{
printf("%d\n",solve(m)-solve(n-));
}
return ;
}
[poj 3252]数位dp前导0的处理的更多相关文章
- poj 3252 数位dp
题意:一个二进制的数,如果0的个数大于1的个数,那么我们称这个数为Round Numbers,求给定区间(十进制表示)中Round Numbers的个数 题解:数位dp,不过这里枚举的时候lead标记 ...
- POJ 3286 How many 0's(数位DP模板)
题目链接:http://poj.org/problem?id=3286 题目大意: 输入n,m,求[n,m]的所有数字中,0出现的总数是多少,前导零不算. 解题思路: 模板题,设dp[pos][num ...
- poj 3252 Round Numbers(数位dp 处理前导零)
Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...
- POJ 3252 区间内一个数的二进制中0的数量要不能少于1的数量(数位DP)
题意:求区间内二进制中0的数量要不能少于1的数量 分析:很明显的是数位DP: 菜鸟me : 整体上是和数位dp模板差不多的 , 需要注意的是这里有前导零的影响 , 所以需要在dfs()里面增加zor ...
- POJ 3252 (数位DP)
###POJ 3252 题目链接 ### 题目大意:给你一段区间 [Start,Finish] ,在这段区间中有多少个数的二进制表示下,0 的个数 大于等于 1 的个数. 分析: 1.很显然是数位DP ...
- POJ 3286 How many 0's?(数位DP)
题目链接 终于过了,边界让我wa了好几次,猥琐的用AC代码对拍,很无奈,用非常麻烦的方法.写一下,估计以后再碰到,肯定看不懂这是写的什么了. 以前做过,统计1和2的,统计0比1和2麻烦多了,有前导0的 ...
- poj 3252 Round Numbers 数位dp
题目链接 找一个范围内二进制中0的个数大于等于1的个数的数的数量.基础的数位dp #include<bits/stdc++.h> using namespace std; #define ...
- POJ 3252 Round Number(数位DP)
Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6983 Accepted: 2384 Des ...
- POJ 3252 Round Numbers(数位dp&记忆化搜索)
题目链接:[kuangbin带你飞]专题十五 数位DP E - Round Numbers 题意 给定区间.求转化为二进制后当中0比1多或相等的数字的个数. 思路 将数字转化为二进制进行数位dp,由于 ...
随机推荐
- 关于JUnit4无法支持多线程测试的解决方法
转自:https://segmentfault.com/a/1190000003762719 其实junit是将test作为参数传递给了TestRunner的main函数.并通过main函数进行执行. ...
- Linux中程序的编译和链接过程
1.从源码到可执行程序的步骤:预编译.编译.链接.strip 预编译:预编译器执行.譬如C中的宏定义就是由预编译器处理,注释等也是由预编译器处理的. 编译: 编译器来执行.把源码.c .S编程机器码. ...
- 一笔画问题 南阳acm42(貌似没用到什么算法)
一笔画问题 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下 ...
- Kubernetes-运维指南
Node隔离与恢复 cat unschedule_node.yaml apiVersion: kind: Node metadata: name: k8s-node-1 labels: kuberne ...
- R语言学习笔记(十一):零碎知识点(26-30)
26--aggregate( ) 函数aggregate()对分组中的每一个变量调用tapply()函数. aggregate(a,list,f) 第二个参数必须是列表.也就是因子部分. 第三个参数即 ...
- Codeforces Round #500 (Div. 2) BC
CodeForces 1013B And CodeForces 1013C Photo of The Sky B 可以发现只有一次与操作是有意义的,所以答案只有-1,0,1,2四种情况 #inclu ...
- SKIP(插入空行)
WRITE 'This is the 1st line'. SKIP. WRITE 'This is the 2nd line'. 跳转至某一行 SKIP TO LINE line_number. 插 ...
- @Transactional spring 事务失效(转载)
原文地址:http://hwak.iteye.com/blog/1611970 1. 在需要事务管理的地方加@Transactional 注解.@Transactional 注解可以被应用于接口定义和 ...
- P2347 砝码称重
P2347 砝码称重 题目描述 设有1g.2g.3g.5g.10g.20g的砝码各若干枚(其总重<=1000), 输入输出格式 输入格式: 输入方式:a1 a2 a3 a4 a5 a6 (表示1 ...
- jenkins安全内容配置策略
有时我们使用HTML Publisher Plugin插件时,在jenkins点开html report,会发现没有带任何的css或js样式,这是因为Jenkins 1.641 / Jenkins 1 ...