[NOI.AC省选模拟赛3.23] 集合 [数学]
题面
一句话题意:
给定$n\leq 1e9,k\leq 1e7,T\leq 1e9$
设全集$U=\lbrace 1,2,3,...n\rbrace $,求$(min_{x\in S}\lbrace S\rbrace (S\subseteq U, \lvert S \rvert =k))^T$的期望
重要思想
注意,在遇到包含
思路
首先,通过枚举$S$集合最小值选取哪个数,可以得到:
$Ans(k)=\sum_{i=1}^n \binom{n-i}{k-1} T^i$
然后,通过枚举$S$集合最小值至少是多少,并且每次累加比上一次还大的可能性,可以得到:
$Ans(k)=T\binom{n}{k}+\sum_{i=1}^{n-1} \binom{n-i}{k}T^i(T-1)$
发现这个式子的后面一部分可以表示成第一个式子:
$Ans(k)=T\binom{n}{k}+(T-1)Ans(k+1)$
从$Ans(n)$开始往下累加一下,可以得到:
$Ans(k)=T(\sum_{i=0}{n-k}\binom{n}{k+i}(T-1)i)=T(\sum_{i=k}n\binom{n}{k}(T-1){i-k}$
这个式子要$O(n-k)$的时间,做不了,考虑怎么把它变成能算的$O(k)$
考虑二项式定理:$\sum_{i=0}^n (T-1)i\binom{n}{i}=(T-1+1)n=T^n$
所以$Ans(k)=\frac{T}{(T-1)k}(Tn-\sum_{i=0}^{k-1} (T-1)^i\binom{n}{i})$
就可以直接算了
最后不要忘了除以$\binom{n}{k}$,求得是期望
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#define MOD 998244353
#define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') flag=-1;
ch=getchar();
}
while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
inline int qpow(int a,int b){
int re=1;
while(b){
if(b&1) re=1ll*re*a%MOD;
a=1ll*a*a%MOD;b>>=1;
}
return re;
}
int n,k,A;int f[10000010],finv[10000010];
void init(){
int i,len=10000000;
f[0]=f[1]=finv[0]=finv[1]=1;
for(i=2;i<=len;i++) f[i]=1ll*f[i-1]*i%MOD;
finv[len]=qpow(f[len],MOD-2);
for(i=len;i>2;i--) finv[i-1]=1ll*finv[i]*i%MOD;
for(i=1;i<=k;i++) f[i]=1ll*f[i-1]*(n-i+1)%MOD;
}
int C(int x,int y){
return 1ll*f[y]*finv[y]%MOD;
}
int main(){
n=read();k=read();A=read();
if(A==1){puts("1");return 0;}
init();int i,ans=1ll*A*qpow(qpow(A-1,k),MOD-2)%MOD,tot=qpow(A,n),p=1;
for(i=0;i<k;i++){
tot=(1ll*tot-1ll*p*C(n,i)%MOD+MOD)%MOD;
p=1ll*p*(A-1)%MOD;
}
printf("%lld\n",1ll*ans*tot%MOD*qpow(C(n,k),MOD-2)%MOD);
}
[NOI.AC省选模拟赛3.23] 集合 [数学]的更多相关文章
- [NOI.AC省选模拟赛3.23] 染色 [点分治+BFS序]
题面 传送门 重要思想 真的是没想到,我很久以来一直以为总会有应用的$BFS$序,最终居然是以这种方式出现在题目中 笔记:$BFS$序可以用来处理限制点对距离的题目(综合点分树使用) 思路 本题中首先 ...
- NOI.AC省选模拟赛第一场 T1 (树上高斯消元)
link 很容易对于每个点列出式子 \(f_{x,y}=(f_{x,y-1}+f_{x,y}+f_{x,y+1}+f_{x+1,y})/4\)(边角转移类似,略) 这个转移是相互依赖的就gg了 不过你 ...
- [NOI.AC省选模拟赛3.31] 星辰大海 [半平面交]
题面 传送门 思路 懒得解释了......也是比较简单的结论 但是自己看到几何就退缩了...... 下周之内写一个计算几何的学习笔记! Code #include<iostream> #i ...
- [NOI.AC省选模拟赛3.31] 附耳而至 [平面图+最小割]
题面 传送门 思路 其实就是很明显的平面图模型. 不咕咕咕的平面图学习笔记 用最左转线求出对偶图的点,以及原图中每个边两侧的点是谁 建立网络流图: 源点连接至每一个对偶图点,权值为这个区域的光明能量 ...
- [NOI.AC省选模拟赛3.30] Mas的童年 [二进制乱搞]
题面 传送门 思路 这题其实蛮好想的......就是我考试的时候zz了,一直没有想到标记过的可以不再标记,总复杂度是$O(n)$ 首先我们求个前缀和,那么$ans_i=max(pre[j]+pre[i ...
- [noi.ac省选模拟赛]第12场题解集合
题目 比赛界面. T1 数据范围明示直接\(O(n^2)\)计算,问题就在如何快速计算. 树上路径统计通常会用到差分方法.这里有两棵树,因此我们可以做"差分套差分",在 A 树上对 ...
- [noi.ac省选模拟赛]第10场题解集合
题目 比赛界面. T1 不难想到,对于一个与\(k\)根棍子连接的轨道,我们可以将它拆分成\(k+1\)个点,表示这条轨道不同的\(k+1\)段. 那么,棍子就成为了点与点之间的边.可以发现,按照棍子 ...
- [noi.ac省选模拟赛]第11场题解集合
题目 比赛界面. T1 比较简单.容易想到是求鱼竿的最大独立集.由于题目的鱼竿可以被分割为二分图,就可以想到最大匹配. 尝试建边之后会发现边的数量不小,但联系题目性质会发现对于一条鱼竿,它 ...
- [noi.ac省选模拟赛20200606]赌怪
题目 点这里看题目. 分析 先特判掉\(K=2\)的情况. 首先可以考虑到一个简单 DP : \(f(i)\):前\(i\)张牌的最大贡献. 转移可以\(O(n^2)\)地枚举区间 ...
随机推荐
- [转]JavaScript中的匿名函数及函数的闭包
JavaScript中的匿名函数及函数的闭包 原文地址:http://www.cnblogs.com/wl0000-03/p/6050108.html 1.匿名函数 函数是JavaScript中最灵 ...
- HM16.0帧内预测重要函数笔记
Void TEncSearch::estIntraPredQT 亮度块的帧内预测入口函数 Void TComPrediction::initAdiPatternChType 获取参考样本点并滤波 ...
- R语言学习笔记(十四):零碎知识点(41-45)
41--ls( ) ls()可以用来列出现存的所有对象. pattern是一个具名参数,可以列出所有名称中含有字符串"s"的对象. > ls() [1] "s&qu ...
- 动态规划----FatMouse’s Speed(HDU 1160)
参考:https://blog.csdn.net/u012655441/article/details/64920825 https://blog.csdn.net/wy19910326/articl ...
- Mac OS下搭建Hadoop + Spark集群
首先注意版本兼容问题!!!本文采用的是Scala 2.11.8 + Hadoop 2.7.5 + Spark 2.2.0 请在下载Spark时务必看清对应的Scala和Hadoop版本! 一.配置JD ...
- Java 基础------16进制转2进制
我们知道,数字8用二进制表示为:1000 用16进制表示为:8 那么我给你一个16进制的数字,0x7f,他的二进制是什么呢? 一个16进制的位数,用4位表示.比如,0x 7 f 其中: 7用4位二进制 ...
- luogu4238 【模板】多项式求逆
ref #include <iostream> #include <cstdio> using namespace std; typedef long long ll; int ...
- LINUX网络相关命令(转)
网络连通性 Ping:发送一个 ICMP 回声请求消息给主机,一直持续到到你按下 Ctrl+C .Ping 表示一个包通过 ICMP 从你的机器发送出去,然后在IP层得到回应.Ping 可以检测你与另 ...
- java 日期格式 毫秒 表示方法
参考URL:http://www.busfly.net/csdn/post/java_string_fomat_date_time_simpledateformat.html 关键代码: java.t ...
- SGU 101 Domino 题解
鉴于SGU题目难度较大,AC后便给出算法并发布博文,代码则写得较满意后再补上.——icedream61 题目简述:暂略 AC人数:3609(2015年7月20日) 算法: 这题就是一笔画,最多只有7个 ...