aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsUAAAHXCAIAAADbX7BCAAAgAElEQVR4nO3dvVLrSMAm4L0Jci6E2BcylBMy0k0mcWIiqnazSahyugkBU6TOT0DVJJCRnfC7BG0gy9ZP/8ltOGCep07NgNxqtbpl66Ul2/+rAQCo87/+dAMAgG9PngAAaskTAEAteQIAqCVPAAC15AkAoJY8AQDUkicAgFryBABQS54AAGrJEwBALXkCAKglTwAAteQJ+Clebi5uLy9ubx7nr/r6vLi4Xdz9Pn2jgDMhT8B3sssEpf+uX6br7vLE6/MivuIwc/y+v2qXPzw1TfP4kNlcsObrl6fr2OYenj6t/4CPIk/Ad/JH8sSh8OLutzwBhMgT8C11wWKQGJrdOfvq+W2/qD27Xz2/9fLE0/X6/rW32i4iDBcelt/ePHZTFP2aY405bLFXyaGdu6qOuewCfF3yBHxLxXliV/LhqZs2uLnep4SuSD5PtD+v7x9/l+aJ6EyJPAFnSZ6Ab6k8T7Tn70OeCFwKKckT5Y2JzU9ELpS4zRPOgjwB31J5nmgXru8fe3liuFZRnojcb3HzOGlMbH5CnoBzJk/AtzQ3T9ze3HWn+ek9EJ+ZJ3oNfrtbyxNwLuQJ+DZmvrmjO9/vTttX6+ibKWbkiX2Z/m0Q4XAT3koXLBZ3v+UJOCPyBHwbR+aJ3fm7zRPBN2icMk/EGrm+v5Mn4IzJE/At7U7bo5Nx8HpHqz15h2+u/Nw8sY8R8gScEXkCvqP+B0z1xPPE/jMuQ7dAnvb+idHq44sgbUsm2wK+N3kCvqHYZEM8T4ynDQaR4iPux7x6fuu/oWPXpEGsCU+WAN+SPAHfzz4cjG+ujOWJLn88PB3W7aWHY653hNozfH/H7o6NwJs+1vev/XxjrgLOgDwB383hizAm76eI5InRzRYvN6MgctrPsxp9zsT1S9M0b4/PN1fTNr/cuH8CzoQ8Ad9J/3pB4M/6YJ7oTU6EdQFlUqAwT3TF2mTQ1ra4exld2si8CQX43uQJ+DYyYaJJfX/HdBpg8kaM6OdcBc73+xs4Bu/geN1Xe2he/GtF9/98vyicAXkCvpfHh/xMwzgZ/L6/CqwyONOnPpciNH8wuT2zV+b3/XXwa0iBMyZPAAC15AkAoJY8AQDUkicAgFryBABQS54AAGrJEwBALXkCAKglTwAAteQJvrztarHcvO9/fd8su9+3q0XIcvPeFttbbQe/7pfuK1xtm/fNsr+Z/uZ3BX+A43c21n3j6mOFyserMWTwFckTfAHDXDA+RQROQunz0j5PrLb7Bftfe1W0v3ePjE9OXYEjTk6jz6I+fKPm/gs4+p9+HVyYWP6RPjZPTAYh9FhuvJoPGbJWb+BuHpvIV5xEvvckPOgFX5KyXfWjUvtkWG7eJ2k5H9fgj5In+AJ68SAXHrKninGe2K0Q/Xs39ED3cn7syenxofflW/uv5H65OXzJxf7n4MLEzx9sxs5GJofG579g/0aUjFesysoh233D2ehb1oI9HxmO/KAnOrJr7nZ12M9hztiuJAq+OHmCL2CcJzbx6xiDaYXQ6WaYJ/Z/wcb+3j1seu4fu++bZdkr/NP17eX1S/P40P/b9O1uHV3YNNHlo15brDb7bmjn/0en3sFZv+AcOy9P9Pd+elVqxqRSUzxezQcN2evzojQ6FMW73aDPyhPvm+U4QQwv8biKw5cmT/AFHDM/MTqXTJa/b5bt2XZ4VWOywvv7rpIPyhOPD+1fvd0Jpr/84Sa08KkJFx5f9dhPjHeNGfzStb33V/0qH36OzhPj/p3kibZA/I6X0vFqPmTI3u7WoW9YPTZPdIM+J09MJiAGeaJ31xB8UfIEX8Dk/onB2SSaJwrmJzLz5/HJ+OVmU3kx/u1u3b9e/jF5YjAPMTn5zD8JHZsnBnlmt2B8E22g4t5qVdenqofs6fr28mrduwGi7e3h3Q/BWyKG80ajQU8XPnTkYrmczj6Ms5fJCb44eYIvIDA/0TsBVcxPHE4uu18HZ5rhaefkN/e1Xp8XF7eLu99/Ik8cTr6lqeK4PLHbXv/P/0FvBucF+rcKNEeM13gjTc2QPV0P7pQc/do0zS4ZjANBcOFh0IsKt/NMy+U4MrjewTcjT/AFhK939M4OlXmiN+PRzyvRP4QX/VNZ9ZsP27n0+z+RJ/a/lYaK+XmirX14v8bwrZzb1WK5XMZvixn9BZ4Zr+ZDhmzc4a/Pi/G9meFrIpELJXMKd0M3Tl2j931MfocvRp7gCzjy/onQ2WiQJ3oPHOY7dtPI/b+te+9TPCw5WZ7Y/bH7MfdjFuSJ+LKpI97fMam0uxOifaCtMTes5ePVfMiQjc/0hxsg4mXiC5vwDEcmTzSjbDbKDyYo+OrkCb6Ayf0T40fz8xN7k/mJ/eL95fnV+NwbPDn1Nj/z5r6n694teIc3Dpz6/aIl90+s+h1XcDY6/v0dI9Ppo4I8UTJezYcMWe8dns3ukz+uX97u1odrFt0ljODCJjLoscLjjhjN7+yT2OjdHuIEX5o8wRdwzPxErq7A+akXVg6vzsOT025KPnBim0icnB4f+h9h1I8CT9eBj6gKLkwsP+xpbn6iH9SKbqH4UnkiOF7NxwxZ0wzundzPEk3HMTa4swqPOmK658vN++h+TO/u4KuTJ/iqei+nw4vKwVPFpPT0T9bQFYDhDW+DEoEPczh/1XniMA7jOyX7F5gCJWaPV2PI4EuRJ4C96ptFgJ9KngD25AngSPIEAFBLngAAaskTAEAteQIAqCVPAAC15AkAoJY8AQDUkifg3O0+a7LgsyV8SQRwLHkCzkv/ax9G3/c+/U6w0XdEBB2XL56uQ999BZwteQLO1G4+IhwZDgljFxdGX5hR8UGZ3deYyRPwo8gTcF62q/0XonVfUrlLBoGveO++Djwh9L2WmS/qbNqv/JYn4CeRJ+DM7GLDLiqE40Lv6+GPmZ+QJ4AxeQLOziFKrLa9ZBCZn9jniZPcN7EjT8BPI0/A+enPHxTmiROTJ+CnkSfgDPXeyRG8H3OXK943y8VqG3+Tx/FZQ56An0aegPPTJoQ2NKTmJwZvJR08tl1lbpDIkCfgp5En4Ny02aCde0jmiWGIeN8sF8vNe8HNlu7HBCbkCTgvXY4YvGM0eCljNCfxvlmWXuhI5on950+0/24eT7hzwJclT8BZmdxhGb3lsn3gEDdGbxc9zfs8gJ9CngAAaskTAEAteQIAqCVPAAC15AkAoJY8AQDUkicAgFryBABQS54AAGrJEwBALXkCAKglTwAAteQJAKCWPAEA1JInAIBa8gQAUEueAABqyRMAQC15AgCoJU8AALXkCQCgljwBANSSJwCAWvIEAFArliceHy4vbi+vX7rfX24ubi8vHp7GPzdN07zdrXslpzW83PQKAwBnpz5PtCUvbm8ewzU8Xd9eXtxeXqzvXz9kDwCAPy2bJ16fFxdtIAj/u3ls3u7Wl8MZi0EN7QSGPAEAZyuQJ9rph+7f1fPbYWH4ekfT/L6/ur15/P1295BIHl1VAMCZOcX9EyFdKJneVwEAnJvSPBHTm8zoFe6ugLT3T7jSAQDnLZ8nft9f5S5hhCYzFlfrXknv7wCAM1aaJ9o5ht6VjvY+zVCeeLq+vbx4eBq9v8PNEwBwttJ54uL28urhZlae2P88meFY3P3+rL0CAD7TNE/03yA6d35it+7DUzMMGV2d48+oAADOwSnvn3ho783czUMML4K83a3NTwDAmTrx/RMvN/v7JErfIQIAfHcfcD/mpAYA4LydIE/0LohIDwDwE0XyRPuBVIu739n7J+6v92kjWdL9mABwtgJ5Yh8L2g+h6s9P9OzmJx7ur9dSAgD8bLHrHQAApeQJAKCWPAEA1JInAIBa8gQAUEueAABqyRMAQC15AgCoJU8AALXkCQCgVj5PLBaL46rerxir4eias/Uktjg1t/JPM9r0cS0pXCtRbO52p80O1pCutr7ZH+SLDMqpWpKu8CQD9xWejCV9Vd6f/YcKX9wqR6e8V2fVUz6Ula/hR1dVuDC75BNeKD76+XhEsc/vhI/NE+kXi37gmPWyUl5PtkOzx+vnn7H6m+7vxXFddMKDMt29oyXZdqYbVnhslBQLNntWH462+BUGJfho4V7H+if469GtynZ4uv2xnUpsurzBiQ2VtHn636O3mB2dYA01R1p2FJrQrvWHNbh6+VgndrOw32JtS6xYfhAebbSJ7ICWVFhZrGT00+a2OZwnjt7MrNaUHz2FlZR0X+EWF5Hnz977ZrlYbWc1dZZRAxLtSbRktG7J5rItiTWm5IlaflwVjtQRA5ook1U2KO+bZbs3y817tJLKQRltPf28K6wnUbhw4D79yZjp6mnLpwvTm063J7YXJVssrK1GorbEIDa9Q3S/fBE5aAtHOXuEjJqRaFvJXsf2KFa+vPJsJYn9bQ7Ha/RwHVVY0raSXSvpz5P0Q2Z+onIb2eO1iR9h5ZtoJk+AWMdlC8TKjArvDouPzBOFEi2Z1bGxAv0dnz5JEptIbzH7HMgeG+lDK73FkzxzYt43q/bFYrsKvG6cdlCmvRRca9ZYHD1wzWTsPvrJmO7qaYMTB1XwkJ4WnrZ22vjCLSZaWN4JoT0O1zyrZLDZiTLZHZwWjrVt9GisJdnemI5OrNPKe6lWd7xm/xbNHhKxwv2Fo6O0ZJX0hkqk8sQRB3GscGKwp8tnSWylXqJ5Hz0/0RQ/c4ItmfZJduCyD6XrnB7BsQand2rWsTFdGNuRUVNjO5tVOChNExiYEw7K9NHsCCZ65iQD1wxHraaTE3sR/jX+bIw1r//odC+CW5xWEixZssVEC0M7kVq9vORovBLbnR4wsV0u2cFY/Yli9U+Q2DFf0rzjxJ4dgcq3q8QExck7oaRkE++xWaJ5ItwR/e29b5aL5eZ9u2qLxqfcY4NaONhZ/X6PjWVisGN7Om1P/9eiPFHWRbP2cdqqUUtGuzP6OTGmRzzJgxsa1Tbtw/RxNevYKD+EEh14tEyd75tl97Jx8kGZPlRSclbPzx24aW2f9mTsd3VireyRnG1Pv9hoydwtpsvHlB+65U+EWJP6u5/osZLtjoY+VrK/uezxkNjH6S6kayvv1ULJMX3fbIrOlaOfEy0/5ikTL1zTG9H7J5rMs6s7R7anst6E47RwrKHlx2LhIdXf3KzDPVFzbIAL8kS0i5rcTvXLZJ8S6ZaU7G/2oEwcD9MNJQa94LiKNjtxbMTGKLGt2EZPNShNk/orpH5QmuS4JDaXeLR+4IKrJPalpB+CbRuvm+zqRFODO5tuQ5PbtfItps0qlmhtenlwUII1B5cXjmlJ+0d73RT0bba28uZNF07bX1ImN0a7k0L+BooPfulOb65k00GZ6x2phbs/vic/R6qa7kb5YCd2b9RlTfxYjNWfqDn2QzM6iw+TQ9M0283+Qlm4iwoP0JKWV+aJ9Fb67UxXNTpYE2uVPKWza8WeGImnVkmZUw1Kek7zJIMSLHNE355w4P7Qk7G0q6c/B6sdSVQ4rad8i9ny2d05rmRJk8qVHCSxp1WwJdnDJr2tpjeCTWg0S54gsTqzZQorfN8sSyara7Y49yUiWEOugQEV909ETpaxtQqPvFhLSnYmu9HChjWRoeov7J3F97eFHW433z+SiFyFB3G2zR+aJ5qCAzFYLLFWySgUHhvHHUKJHTnVoGxXqdeL+kGJlSnppdivJxm4dOHjakvvaXlXJ46W2F6PVp+2c9Rp5VssLD8tmT140rUF97RwrEs2EezA8o1O10ocYNlHE9sqeWhWsdjxHOq67eqD80SiQH2PJZx+fiL2TEsfZ0VbzDU19t+SdUu22F8+5/6Jyc/zXxQSHVWTJ2a93s16KSxcK1HVccdGSbHCZ1RCuoXvm+Ukas7Y0NE7ddx+nXDg+ks+58k4q6tLju30oVJyXizcYsmv5dVmVxktLO/nbP1zn6clB9isk196N3On9iMPy3TJTJ8UxYlTvnTvfy08wI52dJ7o/yk+eFft6FDIPlGPeJ6M6glu8eiXsKIen1zgCIl2Ubn8y1yuJUccQMedYEp+Tmw3+4qTXau8WOUzJz0o+wFJjHf9oDQFPVayuVg92S3GVvnMJ2NhV/fFNtf/IbvKtJemnZDd4qz9LRyL7IrlAzGr8iOep8GFo+bFWnvEkvKOrZF+ZdifDwpvzK9/lSh/iUhvrty8PBF8hkwLJExr3h802cqzpr1Z0tpEDf1ipz3ysoIvW9PlJfXMWp7eXPmAJjaUPq7Kj41Y20o21xzliwxKf4slx3Ci2hMOXLrwn3oyxnYwMZSJ1UfFsjUktjjdVmxJooePPuqmT+TRwZwQ283E0AQPhvTOxvq2pDcKj6UTShxOR286sacla+03XdgbJ+ki3wcGANSSJwCAWvIEAFBLngAAaskTAEAteQIAqCVPAAC15AkAoFY+TwQ/iiRbLP1Q+jNJgh+fUl55eeHCDwwp3LX62rLKe/Ijapv7aOEn2xxXJtueYLFZVX3cp758kBMejafq25qFpz3aKwU/ZylWJl2spEDw06JK2lmpcBcqG3PE0fVxW2mOOu/016rcenYr2Tq/zotSNE+MOivbyyUPZYftiHPSrIOmsM37J3C2qdP/HrfRYM8EO/xU+17etvLNHXHoT/d07jA1ZSMV21xiK+lOS2y0fDSzSqpKlJmWLNnHwt1syvr2iI2etmEnMattJWWmP2SrOvlOFW43XaxyK/XFSmqYe7TEBiVWQ2LT6TL92kY17xcGdye4rcRuTh8q3JFZUnki8Wu2if0+SlRy3Lg2uefY9Nsygj0Y6/fgFtPNiDW+cKMltR0t27DCI6yySSW9PavHCg+n4KEy+rlff7o3shuNbSJYplB5VYlHP79vZ3VspfJxObryafsTnRbsmVFtiUYG+/DknZbY7rRtwd0fN6zgaxLTOx5rzGmV7NoR7SnqomFuiP23mRx10wKJhmWPq5LdOUJVnih5dNQR6WErGdf8gHXfNNg/tqf9GOvZ0XDGyky3O21z+UYTzSjZ8SYpViDdgFkbLW/btK9GfTgtOW3eYnhQZdufWCXYttivwf0q6d7sGKVlqyoco9HPn9a36Y5NtD+xCyXNm7bkOOlmNAX92cw/2QQ77eMUDkGyJe0XtB3/9fHFGyqSWL1wQI9uT7pk7FlT+DRJV5VuwKz+P0L+ese+rbEjrOTp8UE7kDkstqv9BEXJqEwfSrc8uGuxAUtsNFZ+usXCRwtLJkYt26Ty52rw0diGyocpXSCxMPtMyw56dsl0eeWRf8Ke3//8aX1b2LHpSrKbKxysI8ReE6YbmhbLFk4fPB/64pnYbmKLwReNQ8nk/MQJj4QS/a2M2hl8KLVfucIlxUYNmz4aKxbco2lVwX2P9UmiTI38/MRor4J9l1i9yQ1e4qHYgAW3Mvn1fbPZBh+Kjcpof8uPiWBHzdpoonxQ+aGQKJluQLpJs6qdPhrr28IemxZObHp0jMVK9tuQOPAKNxrbl+Okq4odq6Nd+FN9W9ix6Q2N2pY+ckqqKjSqPPjrtGHNsEOCTUocis2kY9MHZP1uTrcbbFh2p/Z5YnfFuft7brTi6OdEnTW7lj3IEwvTFabLZA/F/q6N/hssNj3IYwdktqnp8a1XlSdiT+9+v5T0Y3C7WdMaej+3M2+L/vxE8DmZrCSz6eweFW401oGjIylbJt3U4EPZemI9k9jNdJ3pDcVWXISOlnRrS5o3KjPdVnATwbYd0RvBfjiuqpLe+CN9W9Kxs3os1qRY86YLp+1Pl+m3ObELNe0J9vaoznSFiZoL+3ZaT7C3M/Xs5ye2m/29ayX7GyuT3q+SGtI/jPZo+uusZhd1UTJPTCsJ7nhwaBJLUkdAQU+Wm3G9o7Dpo4WjcWpCfZeuKtHC2A+t981yfzFvOpz9n4OPZjs92Pj0hmIl0+WnyjsqUbJkKI84BGMPjQ6nYIWzeqy8/elGFh6fhYdBYhOFbTu6qvQYfX7fFnZsdkOxZpd0S6yq9C7Eio12bbShbHtK2jYau9gWSx4tFzt+pgdSpp/fN8vFcrlM30Qxr3OOfu4k+jBY//S4DVY464mW2KNpDdmnRnZP020INuO0aq93NGWvZYmSR1cVa2rPdpXLE+W1jcpMmzc9Gso3WlJ+9FD50VA+ZNMOL9+dwrYlejW7ifS6sQLBAU2s219r7qjFlpeUSShp+azu+sy+LezY9L4kqipscExJselupnsj1p7CJ91oQ4li+wLZXTiVTOPfN8vFcrVa9t5aF64ku5Vs4fJKpu0c1R98NHZElTw10uPbXxL7b6Kqkq4o6bSPOGxmv7+jsOnB1dN9V9iSxFrj5Yc4ceI8ESuWWKXkKEztS1md2VVqnPBVIPY8mTtMJZ1WMrjBh2qeunMbllB+YKRfev5U3xZ2bLaF04bNen5lt1hSLLbFxNFbsiMlW/yIV//EdmNbzCzsrndsV6lEkd6XkqGsHNzYSM16fYhtqPCZEvzvEaN83LM1VqZSUZ444nmbGKTpf9PKe6F9qPvwicGcW+J1tonsYPrVuZkMf/A1pXCjhbt53PPqVLXVvwpMF05/PWKYZm0x3drgsVqyYnphzVO3sKqSA+yP9O0JO3b65Epv9FRGrwnB5U2vh6cPJZqd7sNYPR+h+mjvXnpX2+4GtvBlj8S+lB/eWSVbCT4pgodobJXpCB7xTIk9KUoc/Wz9iCMqnCdmPVGDSwr3J71L5UNVUlXs58Rxk6ghcShkB7hkv8r7KrvvsbVmLU+vUvhQdscLe2z6c+IYCPZk+qAtb0asquySQuVVLUJiK35m32Y7dtbxEytzdA+XCLY/24DR8lm7OVorNqYnlGhbutgRrSrc1qxHC8tnD+bYIZqo9rgumh4Y02MgIdawxNGYXVLP94EBALXkCQCgljwBANSSJwCAWvIEAFBLngAAaskTAEAteQIAqJXJE+nP8eg/NOujSAo/1+WDfNpnwmQ3dKqWlAxT+RCUbytb1ad9Gs9oo5+/LsAPF/18zJIP59oXHv0QrHD0c2HhE/qEU1rJbsbO/dNezXZ++TClmxFcHqstUSB2YGQ3ehI1g/vRBwbA2ctf70i/zo7ONMFTSP9kkz7JFW60Rux02DSHL7M5rtrC3Yw9FNzlwu5KPxqLBUeEgHR7PiRPFAzKRySJwGZ3307Q+56j6ZLYQoBzl/o+sKBgsenPozL9H2Ln3eAqJzdqTO/n9htsjswT05pL4kV9nigZpmklwWr7D6UbOdrBxHazx09OZlCOqjO/7i4SDDbbfWPiIWhMl8QWApy/GfdPZEsmzoizXvSzqxxxFkmf2xanmJ9ItzndknTvTX9OFMtWEksb/ZRQsvrRJ/J5IoPyQUkiutntqvu195XMoyXBYgA/wwnun2iSL9BFJ/LJKrGHsptrmvaVfLl5331j7uhFPXg6HOWJI2asj9jNxPJggVi3Z4cpWEnsh+BWgr+mt1jSsNGOhLsgOSi5FaOHQWbdSRzo/9pOQUyXBIvF6gc4M6n5ieyppb88fWrsn6um/00Unq87f7Sv69tV/xTUP58FzrL7s8F2Mz0RZPexmbmb6eXl5+PsMMXWDbYtXVts9dhulgzivky4cGRQ+vsSGpr8YRBfd7DZ/a/79fd5YrQkWCy7+wDnofb+iX7hxGamlZScgUrORgG7P0zHP4+2G9jQ+2a5WC6X4ev12X1sCnYzffI+ojdKhqkkEJS3YdSBidEsHL5Y5+wUD8p4xyOHQdG68gTATNHrHU3u1FIodnKtyROZU3voRDI9acXyxGo1PfVk2lO+m6fNE4XDVFJJeYH+8myOyZbplwxuJTsoo9UPP+fyRGpd908AzJS53lFyMmiyJ/jhrEDwRNsvll6S31zyRDI6eQz2q3emmJ580jtYuJvp/Z31a395epj6v6Z7eNagxP6bVlJmIDkoo5oHlZflifC6gTjQe+PGrqbpkthCgPP3x+6fmFaYqDxR88Tuvr3FYrXd/9x7ZQ+e2heLxWHF1ba7+D77z8vsbgbP/SU5YPprYvl0xdgmEu2MFRiV+eA8MXtQuhZmDoPkuuO7L4Zt8fkTAAGnmZ/ICp51pien9OonccKqYpUndrO8bdmU0F9enkti4SBYLD3o061kB/FDOx+AP8j3gQEAteQJAKCWPAEA1JInAIBa8gQAUEueAABqyRMAQC15AgCoJU8AALXkCQCgljwBANSSJwCAWvIEAFBLngAAaskTAEAteQIAqCVPAAC15AkAoJY8AQDUkicAgFryBABQS54AAGrJEwBALXkCAKglTwAAtSJ54un69vJiff86Wvxyc3F7eXF7ef0SXu31eRFYCwA4b+E88fv+6vby4uFpuPTtbn3Z5onJQ03Thon4owDA2QrkiW4Sovu3uPvdNE3z+HB5cXt59fzUporgFEUXKXarAAA/QnB+4vGhnwneXn93QaG9ltHOXoQjRTeH4aoHAPwciTxxtb68uL15fLm/Wl8OZywO/66e38Yrp9IGAHCOQnni7W59ebG+uW7zRPN2tw6Hg8eHtsDI07W7KADgRwnliafr28uLh/u7XZ7Y3TnR/bu5e15crO8fnxfhSYjD7RfuogCAnyF2P2Z33+U+Txx+SOeJQfgwRQEAP0H+/R3r+7vyPLG7eeLmcf/D5+wGAPAHxT8f8+2I6x27kg9PzeH9pZMbNgGAM1OcJwrmJ3YTG/s5ifbGTHdRAMC5O12e2L2toz8hMfjUCgDgXBXfP5G53tG/0tGz+3grVz0A4JwdMT/RXs547eWJ7gaL0N2XPt4KAM5efZ5IhYlW7ltJAYDvrTxPXD90X8zRTTlcrO9fx/dghnXfE+btowBwjuJ5AgCgjDwBANSSJwCAWvIEAFBLngAAaskTAEAteQIAqCVPAAC15AkAoJY8AQDUkicAgFryBABQK5Yn3jfL5eZ9uGy7WiwWq22w8GJS+njvm2VwM+EGbldt4fH/w0WDTtj2/UYSdW5X4W4EgO8qkiemp/R2SfRUf95OecAAABAESURBVMJzZD8QhBJA/8HVtv3vYZ33zXLcjkn0CD9a3epx+943y2BwkScAODeBPDE6h6+2w3Nu7PxbNKuQ1+WBds5jsxr+ob/fyPRc3TY1uLx7ePXh8xODThj1yGCaRJ4A4JyE5ycGf8hP5giWq1UoUkQvh8ywn13YtkFiG8sTg7YN2tqVP+Se4+Yn3jfLWNLYrhaL1WafXHqF5uaJNv4IFwB8c8E80buEEDwFN83kRN8uWVbeR9GbXYjf8dC1Z7taLNopjK78+2a13IeDwSWQaZ7ITqdk8kQ/tyyW//f/TKZFlpttJk+8b5ayBABnIZQnhkmid0rvn4xHZ9rdLZmhs3TqEkTwskPvtB+dnzj8jd+W3m1ktd2u9ift/hm/Hz0Smy4zvGDRuxt1mBDS8xPb1YlvBAWAPyaQJwbn/+Vms+r/cb8/ew9PhYPTe9VZcrh+5npHIL7smna4XjKc7Sifn0i3MZgntqvlcnkIXqk8MT/EAMDXFf/8ifD8RDBPDE+cNYlikGXazU2MWzWaY3jfLEcXXrrWvm+W4TmKubkinCe2q/amitVmt8D8BAA/RTJPLBaLxWqVm5+YnBhP+HEUifmJwdl6UG7coK613W0hk6mVU+SJ/7e/7LLa7irN3Y95ihtYAeArSL5ftGB+InJPYdVbIrtJiuXmPZ4n3rfb995sxvTtKIMT/uESSHGeyL2/Y5gnVv97/zbWGe/vSGwDAL6RkusdwZsP9ncnRGLDcafKwTsnmtz9E4cplN1ah9X7m3/fLA9vtkh+QlbhDkTvx5zmidAlmf7qbRmRAoDvrSxPtDcddPcEHE7imfNg1YR+6m0huxZNokZgya61m97kQPX1jnSjs/MTAHBufB8YAFBLngAAaskTAEAteQIAqCVPAAC15AkAoJY8AQDUkicAgFryBABQS54AAGrJEwBALXkCAKglTwAAteQJAKCWPAEA1JInAIBa8gQAUEueAABqyRMAQC15AgCoJU8AALXkCQCgljwBANSSJwCAWpE88XR9e3mxvn8dLX65ubi9vLi9vH5JVPl2t768uL28en47VSMBgC8tnCd+31/dXl48PA2X7oLCReChQDF5AgB+ikCe6CYhun+Lu99N0zSPD21KeGrjQm+K4um6V2yaJ16fF7kIAgB8Z8H5iceHQT54/d1lgvYKSDt7cYgU8gQA/GyJPHG1vry4vXl8ub9aXw5nLA7/rp7f5AkA+OlCeeLtbn15sb65bvNE83a3Dt+A+fjQFpAnAOBnC+WJp+vby4uH+7tdntjdOdH9u7l7Xlys7x+fF90ljzZP5P7JEwBwrmL3Y3b3Xe7zxOGHSZ4Y8f4OAPhh8u/vWN/fyRMAQEL88zHfCq937B49XM6Y5ondBZHkp2ABAN9WcZ6Izk/IEwDw08kTAECt4vsnXO8AACKOmJ94bJqm+1QJeQIAOF2eKPgnTwDAeSrPE9cPu8sfr933dwS+0DzM/AQAnLV4ngAAKCNPAAC15AkAoJY8AQDUkicAgFryBABQS54AAGrJEwBALXkCAKglTwAAteQJAKCWPAEA1IrliffNcrl5Hy7brhaLxWobrWu7WkzW6SpbZA1XHW8/1J624mGDgm04LNyu0hufrL5djVvW74yiXQGAsxfJE9MTdbtktHx4+h3+Nq1iuixUplfbvrpIuWCcCJQLB51p2X1oiYaFQzWp8CRPAPDDBPLE6GS62g7Pkf2fT54nimYyFsvN+6TkrpmjgsvlYrXtGjYNQ+MwEp2mmOy5+QkAOAjPTwxOtZMz53K1Ovwd/2HzE+NmjIxP7pO5k+Z9s1yuVsvFatvWM358VPsuTWxXi8VqZX4CAGYI5ontan8Sjp3S29Np6o/0btKgryRPFNY5zhPL5TJ0C8ZmtVhuNqG4Mdq1w2YPExoAQJFQnhgmid75fX/6Df8NHpmfKLuGsRhfJkhNToyb0GvrYF5ludlulovVarVYbQrutejfPxGZo2hzSZlU8wHgnATyxOCEudxsVodzbJcydifeyRWDQSQITD4E3rUxma8oPFOH7p/Y1XB4L0e7MHJVZZwnes1v88Tunot2Y6vteI3MxRoA+Dninz8Rnp+oyxPj6wixU/J2Ff7rvpdHgvMTg0f2C3d7ELiwMkoHXYZarZb5POE+CQDoJPPEYrHozqsnmZ8Ivp0jdP/Echmdp8jniWa08HCrR8l7S/etCt/HkbhNNdBIAPgZku8XPe38RO9SRKxId9KPzVsUzU+M6t63apwogvdPHALBNne9I8JlEAB+npLrHf35idYhT2Ts1wh/tmYiNxTMT0QmDg5bHE9LDDLI9NMo2roPOeS4POG9IQD8PGV5YrPqTuX70/icP9Rjt0Mk88RR8xODlBF+u2vo/SrDTXSN7seC3VqRz/x2sQOAn833gQEAteQJAKCWPAEA1JInAIBa8gQAUEueAABqyRMAQC15AgCoJU8AALXkCQCgljwBANSSJwCAWvIEAFBLngAAaskTAEAteQIAqCVPAAC15AkAoJY8AQDUkicAgFryBABQS54AAGrJEwBALXkCAKgVyxOvz4uL28ur57duwdvd+vL6pfvt9/3V7fjXi4en2FaGtT1d315erO9fR4Vebi5uLy/61U4rma4FAPxxhXmi/fXi9uaxaZqmeXy4vOhlgl3hh5ur28uL3r99MhjUFg4fb3frbsVQLukakEotAMCfUTw/scsQV89vu0DQZYvuocXd726OYX/K/31/dXt59fx2qK2bhOj+Le5+9yt/alNFcIqiixS7VQCAryKQJ3ZxYf/v5m4/NzD5d/X8trt+cXvzOE0h0zzRDx9N0zRvr7+7oNDOdnRbD0WKbg7DVQ8A+FIi8xO7M3d/fqJpmunMRNN0cxLr+9f+HEavfDBPXK0vL25vHl/ur9bhpBLYepNOGwDAHxLJE+2UQ1Ge6N1L0bsHor0w8TLNE29368uL9c11mydGt3mOqx0Gl17D3EUBAF9IME/sb37M54n9xZH1/Wt7sn946qY3gnmiLXN/t8sTXRzpX1tZ3z8+L8KTEIfbL9xFAQBfRihPDKcZHp4md1T0ZiCeuxP8+v715WYwCXF78xi5H7O773KfJw4/pPPEIHyYogCALyKQJ3pvwWhP/KP7IcbzE+vF1e3lxfr+rjvZX790d2hm39+xW6ssT+y3HryNAwD4U2J54mo9fr9o0wTvn3h6bNPD+uZ6vU8Sg4mN0f2YTdMcJjDmXO/YlXx4aqY3fgIAf1D4/aLdGb3o/R2jz7vsZiD2n1RRkCcK5id21e433QYXd1EAwBcQun/i6fEl8HlWTVOWJ/pn+pPlicD7TQafWgEA/EH5z8eM3oy5f5/FIE/sTvPtzZKl909krnf0r3T0RD4kAwD4ZOWft900BfMTuwLjyxDl8xOPvfJtnuhusAjdfenjrQDgKzhpnthdlZie3V/H1y9K80QqTLRy30oKAHy4E+aJ9srF8Lzee7vH4EaHcZ643n/IZv8Dssb3YKaa6u2jAPDHxPIEAEApeQIAqCVPAAC15AkAoJY8AQDUkicAgFryBABQK5AnfgEA/Pr169evqjzxPwDAjydPAAC15AkAoJY8AQDUkicAgFryBABQS54AAGrJEwBALXkCAKglTwAAteQJAKDWB+eJ//75azH01z//Rcr++3dJKQDgy/nU+Yl//14s/v73lAUBgC/gM/PEv38XzzvMKAoA/Gmflyf+++ev0jmHGUUBgD/v0/JE0YzD/hYKkxMA8I18Up7475+/ZmUEN1AAwDfyOXlifjxwAwUAfB+fkSfmTk7s3mZqfgIAvomPzxOl2WDwURXmJgDgG/H5mABALXkCAKglTwAAteQJAKCWPAEA1JInAIBa8gQAUEueAABqyRMAQC15AgCoJU8AALVq8wQAwK+aPAEAMIs8AQDUkicAgFryBABQS54AAGrJEwBALXkCAKglTwAAteQJAKCWPAEA1JInAIBa8gQAUEueAABqyRMAQC15AgCoJU8AALXkCQCgljwBANSSJwCAWvIEAFArlidenxcXt5dXz2/dgre79eX1S/fb7/ur2/GvFw9Psa0Ma3u6vr28WN+/jgq93FzcXl70qw14u1tfDhsGAPxphXmi/fXi9uaxaZqmeXy4vOhlgl3hh5ur28uL3r99MhjUFg4fu6Bwkcwl8gQAfEXF8xO7DHH1/LYLBF226B5a3P3u5hj2geD3/dXt5dXz26G2bhKi+7e4+92v/KmNC70piqfrXrFpntgFnVQEAQA+WCBP7OLC/t/N3W5yIvDv6vmtO+XfPE5TyDRP9MNH0zTN2+vvLhO0sx3d1rtIIU8AwJcXmZ+IXFaYzEw0TTcnsb5/7c9h9MoH88TV+vLi9ubx5f5qHU4qw7AiTwDAFxbJE+1ZvChP9O6l6N0D0YaAl2meeLtbX16sb67bPDG6zXNc7c2jPAEAX18wT3R3Xxbkif3FkfX9a3vuf3jqzvrBPNGWub/b5YkujvSvrazvH58X3SWPXbLJ/JMnAOAPCuWJ4TTDw9PkjoreDMRzd3/l+v715WYwCXF78xi5H7O773KfJw4/TPJEuG3e3wEAX0ggT/TegtGe+Ef3Q4znJ9aLq9vLi/X9XTfTcP3S3aGZfX/Hbi15AgC+s1ieuFqP3y/aNMH7J54e2/Swvrle75PEYGJjdD9m0zSHCYzc9Y7do4fLGdM8sdti8lOwAICPFH6/aHdGL3p/x+jzLrsZiP0nVRTkiej8hDwBAN9A6P6Jp8eXwOdZNU1Znui/I0OeAICfIP/5mNGbMbtbMn8P8sTgDZyl90+43gEA31n55203TcH8xK7A/uMiYrVF5ycee+XlCQD4Hk6aJ6Kn9tfx+zVm5omCf/IEAPwxJ8wT7ZWL4Xm993aPwReUj/PE9f5DNgcfkFXC/AQA/GmxPAEAUEqeAABqyRMAQC15AgCoJU8AALXkCQCgljwBANQK5IlfAAC/fv369asqT/wPAPDjyRMAQC15AgCoJU8AALXkCQCgljwBANSSJwCAWvIEAFBLngAAaskTAEAteQIAqPU5eeK/f/5aLBZ//1tQaO+vf/4rqzZXeFRvWdUAQLmPzxP//r1Y/PXPP3+X5IkZJ/r//vkrW2OsOUesBgDEfXSe+O+fv/7+93+KTuOz8sS/fx83y3DsegBA3GfdP3HiPPHv37s5j3kXMP775y+TEwBwcl8rTxTf4vDv3/37MUqvYZicAIAP8YXyxLh46tQ/SgZFQeG/f/4SJwDgI3zRPJErP3q4JE+4ERMAPsrXzBP5N2/0JzBKJh5MTgDAx/nwPPHv36MPf4jFhDm3T4zKZ0sf++ZSAKCEz8cEAGrJEwBALXkCAKglTwAAteQJAKCWPAEA1JInAIBa8gQAUEueAABqyRMAQC15AgCoVZsnAAB+1eQJAIBZ5AkAoJY8AQDUkicAgFryBABQS54AAGrJEwBALXkCAKglTwAAteQJAKDW/wfrgstfpw3BlgAAAABJRU5ErkJggg==" alt="" />

-------------------------

可以这么考虑,一盏灯被按奇数次就是开,被按偶数次就是关,而只有自己可以整除的人才会来操作,所以问题就变为:求序列aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAK0AAAA8CAIAAACb963yAAAF9ElEQVR4nO2cLZyqTBTGT6BQCJdAoRgsFMNusFgM3mCxTLBYDG6gWAwWC8ENFovBYrFMsFgMbrBYDBQLwQ0UC4FCocwbWFndlS/d+46u5x91WB6f3wOcOTMsMARhDHgLQG4CzAHCGOYACcAcIIxhDpAAzAHCGOYACcAcIIylzoE3p2ewHS/2KH8xO3cYpZTShEMfDs4Op8uB51BK+71O6UmDI1rGJFakO6N0MhoU8mp4iPZUGo6nlM4xBifwdjjzc2HUbYSnlHKlNCdzraUAAADVZs/Per7Hg4vDF9QHfrNSCIVOllbyEY4pAoiKtsebQCo4OHxJndgo50OVpXoncby9pgBA2oMLzvWY/P8OZ8+Ba8nC0RNMkLdOwq1oNuwAAF3bF2p8NHg4nDkHm9kQADqdTqizPaDxh+i1J0EuuJdKfDS4OJw5B8ZLFaS843tFVQxUyvly3FPJd/JSqpsbEsDF4aw58Es58ammM8YmRisM7HT1HnWA9TYBAGPydo3KR4KPw9ly4GwXAkB3NGeMefZGOjzGyo1u1CHDTh1AMpOecEgAL4ez5YAO2gDCavdxl2pVD9MbUX13z+uoFmTlqXaNxIeCl8PZctCsaLJWCeUEFU1AZzj7Pt7fb0SARnd0pcrHgZfDWXLg2ap4Okn13edDLaMUqt/juhj3AGC62l2p8lHg53CGHGwXYwAYL7bHHx41QYXZ5uv8tU2KIOWxNkgJR4cz5KCv10BU7dMZjPu+Eg8yqy3j5Dvf0WQhKH2RNHB0OH0O/HJe0irN7180K4clstPfEDQ7g9IXSQFPh9PmwNuthIhSZU0HYS3TGy/Cz8e9JoC4tnFxKRV8HU6bg9mwAyC8Wed6l76jHRriapGEH9eelOPSF4mHr8Npc/BSLYi5UtQph516WMvMzT1jzHdMCdcYs8DX4XQ58Pc5EaovRtT3jrUMa5ma/soYW03730tfJBLeDqfKQdDBHs3NmDH1Uu4jrnJ+77Fuo/y99EWi4O5wqhwM2gQEZRd7ytX0NaxljMmsIAtnS1/kLNwdTpMDv6LJ+XIjYZS3zx9qGUVRIMWqOXKAv8PJOfDstQig96eJI1/1GnwiLLbOTyj8/dyCw8k5oIM2AMw2+8SRe3Me7qcS1SLWBim5BYeTc0CKKgiqnW6WSoofG+ljSt9s+G6v3RABAMRGu5v0boZntAgAgPjndXymIXMMHRl/RAAAor/G/7jNYppTJAAolMk+YvE3u9RPODvMGEvMgb2ZCQAgaSn3vgXLXwAwnG2uF8dO9+QAwHNsL/247waCZO4jrT1u2icV6u6z8jm22Rv/iNQQ7g4HxOXAsa1yIUifOF2lm6d6dk4SQJDPtsUuQK89wykxu3InxsvxyJg7bTBPCznbzf3As+SjkTHbADNJDbgFhwPO5MB93xBCapXSl1+l5gt6b5j4F41WNVeq/5S+LxcZxBbJtjkPr1xJLcS81OG77/k/h7GCtNzGPJv9eunzbYLX6ep6qTflcMDPv+9sm8vhdJE8Li3eyOgSQvojuqIDiL0zM8bMJSWEkEbLtBKuRdsyWw1CCKHLuO4NY8zd7zp6kxBijOLnadmkXsxPO8zYfb33bi0ncCdbn+9IagDPHOy2m8Sr9phRtwGiYt3D9qY7khrAJwf7nTWbDsQsHTHXNlVJ+Ed32p/ljqSGcLwfuJqUNgeeY5cLarH6cvu9qTuSeszt58Cno35OUXRjdPM32TuS+pVbz4Fe/9tqd7e75J4rd25Nqm2Zw54erE1vFlMtpyhaOaodeus5QK7hbWJoleZ2RTvG2N7MAKRtRPcJc/CbaZNio901BhPG2HzUjdnMiDn4vfiOJgtl0g4q1mZFi5nCYA5+LfaaAohz02aM+c5WFmBuRu5XwBz8Wsa9ZrjmuaYDUS3aduR2Rm458JytIkBN7/MS8OshRTVsbPeaFa1Umy/XUYP55MDd78J/+xkjDrkCb05puGvGMtdrM+7/793TOhPy78AcIIxhDpAAzAHCGOYACcAcIIxhDpAAzAHCGGP/AU64t7a2cz/EAAAAAElFTkSuQmCC" alt="" />上的每个aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADUAAAA7CAIAAABUjlVXAAAD2ElEQVRoge2YIZiqQBDHJ1AoBAkWioFCMdwFioVgoVwhWCwGDVcsBovFcBcsFIPFQngbKBaDFygWAoVCOIPFQqBQKPvCfgLeCSyiT9/3+Y/izv4YZmZnFvBjC+4NUKAnXzU9+arpv+SLRj3trCa6QWN0bejn1x9luYcKfFFgIrTQPzRNZeFEDC8ewmKjznaDEJqOh406l14uK+p8iRBCPoWRbL6U/L2nNIX0Hp+GRWsb451lHN+Mm5slFtLyYYyDgyvWEj82Wp0S5gOXOFAbzi6Ao+LDGHcVMeVBduP51HhrEhYOTVhcyBd4PHMShZ2RTml9i2YAILV7l8FR8dmmDgC1Wi1xYL3pR1TWP97fAGCyWN+Qb9JrA8DSXNdTyaybNoXxSBE5ANY+0L3NRXyhLLDAiX6ER51WzNdU+4WmA++LAai/vF0MV8znu2sGQNaGGGNvs0xVQs7eF4Q8mg0BoDue35DP+HhPBVDYaiT1tj9d5q/ttSUAQNv9Dfk6rQYAuz26ajntJ1kiyHkODPcCCwwvUWbSRXyBxzPAN9XUpjaXqjWLtZu11FnN4RgYt+Ij1etHAPXVZnKeZm8/HagAMF1+3ZCPVBbD+k7/SBxzzBLePf/9QllgATin4tfN5QtlgT0TQFHwKiSVcDhDv1eSrK9YWQr4fGeV9QXn427Mx0vt3y4ilaU3WdyQbzkdZB1Nwc5K94WGtfvxB9JPVKwsBXyksmQdTemORumOT54FHs8AwzeD6nRZfJHv8kxeAFnGZ+JAVtgFyWuQfqLVGV0DL4PvbGU5UeRLqa5rPF/FT0jWf5Rps0vzkT3yA2g21GI+4fXt6MBQFtjsunMdvvClzhQeTaSIxJVw5RzwMesFWbsK3Hm+g21SHk2anIxOb++f+NhPXKWyZPKRykJzNK0Xk9RRIh5CkvVg2rTj7SV8mizQNr3hPnWUwGSm8www9ZcLZyEavsLK8kPTvhrzcRx3phxel6+4spxqb5unwx3M0PaGfENN/t2z5CpSm3WKjuYafFGwE1gA4NwyZ5Opj2K8crcLZflI3wH111IeiHwvHj0HRUNJWt+uvdoUBEPCF/rfEtmHE8t+onj0XDm0Vx84Oogcc7b9+cUX+sZClxpJGCnaAK029Hxk9CyYmH4q7LQktibYu7xggnxRJ0qoiHy7NymBR6er3e+uDR1tnGtZi/Vf3j//I7m2Nex38y8T78PnbJCmKiTE86eU+/kv8kXukfkwVkT2ofnaEvfkq6AnXzU9Oh/J3y8vr6m4G59r/SFXsb3xPKebuw/ft2ujlHK61Gd/UE1Pvmr6C1Bn4R0dwP+YAAAAAElFTkSuQmCC" alt="" />在区间aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAGsAAAA2CAIAAABPzfByAAAEQ0lEQVR4nO2bLZiiQBiAv0ChELxgoRAoFsIZKFcIFIplwhWKxWChGCwUgxssFoLFYiFYKAY3UCgGioXgBYqFYKFQuLDL3KwKpw7+LA9vlA++mfdhhvkT0ho64NkF+PbUBmmpDdJSG6SlNkhLbZCW8wYnBoIc1K5Z8Li1bcmSiIzJXQqbpmmaHvY7u5AgjMh4d7XMiwyjGIchmc+r8my1LSjPfwzKmn6U1d2cf5wzn0jiZyHuajAMfNu2R8M+x3ypJ8M1jeHoyEuaJrY15hvsVyeshtDEmpOB3to5qqnYKMPgBS4S2xq3hCZZwLsaxIz7HVKfu93nRS7e+jjOMMf7Q3LJ8/FLeVeDSbej9AembduaLD7Y4HzUwxk7/bf8wBjJIgDwouwF4eXPf4xBopg7l3msQbOrYoO2l6cmHuoaACiod+Grh3m0wTSNRPaRBhNF5D57NV6Oz0XEUfhbbQOwg+nihgSPN/gv5QMMxqGHvw5nhweB54h8o8GLjhfclqLiBlczEzfh6XJzdNW2hiyApKCv3+XrqLhBA8mQteGQsJQc9j2kADA907qu2zuh0gaTqPXj87vVUrv4553/LglNrinY7z59kiobDD0bN+HBdPnxo22ZHAOirO32h1KyVNngzOxmAlkvjLOWC7oxub3bO6HKBvEc9kdLDfx3SWgC25g7XrlZKmswibZZHwi82Mpmx8xsVULfR1JZg+5ijDvB3sDkM4Wc0KYYupyhsgaHupIJZNxdvJwOsNBy81bVYPyzyeBOMEnTNI01KUvMcCv/irWDYqppMPKd0zcu9B08wxPanbKacjUNLsZ9bJCs2BuxVohHiJRU06CuZKuQrLAnZm3JIZR4LmvKvB+WMKiuosF4l/WBIGm9o4uePcGvYbvTp89WQYO+Y2FHQ8s5uZ50VQkHnC7YXEsFDRIbI6wXnvlgHP5s8J4Sx0vhlYvSR1TPYPJL+NSTjWPO8G9TiboYVTMYbVd4H0YfWrlxyeEX3qYE1r51gTp9rkGtNyoIWy2mIt8AAEnWLt88I9ZjYOHuCiLJEU9DaN/clp+50yQjIzcoWJO732xD2O4vGAInB1ng8E1+VBTrLt6IDNBW9dscPtrgej4ivIh+eL6WR9W7LEVsdjvkLeOFmxsaheTO9QeSgvxrdoo/eJDBtW0hhH62BDhBVjSEUPDV5NE7CAC8jPIebo0MhFDz6HgHAAAwXBMhtHSJusWhjjT2NDRDlGSkG5fP+Z7QD16Iv7YRQv2BGQRbgQOupZaeohRe1yBBLDXOzC5ehG9gcO87DMBovr5fChpe32DSVSVeUukmDnfk1Q1ODMQ1xc2ucGDyVF7X4Haz1uRWW/1d1sbunXhRg6uZqWj60qVdOHkA5Rg8pfgc9fel5HPUge/lnd7OO0f93Tk9R40p7m3qf0PQUhukpTZIS22QltogLbVBWmqDtNQGaakN0vIXLg/yJI8EK2QAAAAASUVORK5CYII=" alt="" />上的约数的个数,约数个数为奇数即为开。

AC代码:

 import java.util.Scanner;

 public class Main {

     public static void main(String[] args) {

         Scanner sc=new Scanner(System.in);

         int n=sc.nextInt();
int k=sc.nextInt(); for(int i=1;i<=n;i++){
if(solve(i,k)%2==1) System.out.print(i+" ");
} } public static int solve(int n,int k){
int res=0;
for(int i=1;i<=k && i<=n;i++) if(n%i==0) res++;
return res;
} }

题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=77

NYOJ题目77开灯问题的更多相关文章

  1. NYOJ 题目77 开灯问题(简单模拟)

    开灯问题 时间限制:3000 ms  |            内存限制:65535 KB 难度:1           描述 有n盏灯,编号为1~n,第1个人把所有灯打开,第2个人按下所有编号为2 ...

  2. NYOJ 77 开灯问题

    #include <stdio.h> #include <string.h> #define maxn 1050 int a[maxn]; int main(void) { i ...

  3. [NYLG-OJ] 77 开灯问题(白书例题)

    #include<stdio.h> int main() { int a[1010]={0}; //储存灯的开闭情况 int n,k,i,j; scanf("%d%d" ...

  4. 洛谷 P1876 开灯(思维,枚举,规律题)

    P1876 开灯 题目背景 该题的题目是不是感到很眼熟呢? 事实上,如果你懂的方法,该题的代码简直不能再短. 但是如果你不懂得呢?那...(自己去想) 题目描述 首先所有的灯都是关的(注意是关!),编 ...

  5. 【Luogu1876】开灯(数论)

    [Luogu1876]开灯(数论) 题面 题目描述 首先所有的灯都是关的(注意是关!),编号为1的人走过来,把是一的倍数的灯全部打开,编号为二的的把是二的倍数的灯全部关上,编号为3的人又把是三的倍数的 ...

  6. POJ 1218 THE DRUNK JAILER(类开灯问题,完全平方数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2188 题目大意:n为5-100之间的一个数,代表有多少间牢房,刚开始所有房间打开,第一轮2的倍数的房间 ...

  7. HDU 2053 Switch Game(开灯问题,完全平方数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2053 题目大意:灯开始是关着的,有n盏灯,i从1数到n每当灯的序号是i的倍数的时候就对灯进行一次操作( ...

  8. 【洛谷】P1876 开灯

    P1876 开灯 题目背景 该题的题目是不是感到很眼熟呢? 事实上,如果你懂的方法,该题的代码简直不能再短. 但是如果你不懂得呢?那...(自己去想) 题目描述 首先所有的灯都是关的(注意是关!),编 ...

  9. c语言实现开灯问题

    开灯问题: 有n盏灯,编号为1~n,第1个人把所有灯打开,第2个人按下所有编号为2 的倍数的开关(这些灯将被关掉),第3 个人按下所有编号为3的倍数的开关(其中关掉的灯将被打开,开着的灯将被关闭),依 ...

随机推荐

  1. jquery左右滑动效果的实现

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  2. Java Annotation自定义注解详解

    在开发过程中总能用到注解,但是从来没有自己定义过注解.最近赋闲在家,研究整理了一番,力求知其然知其所以然. 本文会尝试描述什么是注解,以及通过一个Demo来说明如何在程序中自定义注解.Demo没有实际 ...

  3. Android学习笔记(十八)——再谈升级数据库

    //此系列博文是<第一行Android代码>的学习笔记,如有错漏,欢迎指正! 之前我们为了保证数据库中的表是最新的,只是简单地在 onUpgrade()方法中删除掉了当前所有的表,然后强制 ...

  4. qt-5.6.0 移植之实现板子与ubuntu主机通过网络进行文件传输

    经过一上午的调试以及同事的帮助,终于实现板子与主机的文件传输. 第一步关闭所有的防火墙 在 Windows 里面是在控制面板->安全->Windows 防火墙->自定义设置 在ubu ...

  5. android之inflater用法

    在实际开发中LayoutInflater这个类还是非常有用的,它的作用类似于findViewById().不同点是LayoutInflater是用来找res/layout/下的xml布局文件,并且实例 ...

  6. Java计算程序运行时间

    public static void main(String[] args) { // TODO Auto-generated method stub long nd = 1000 * 24 * 60 ...

  7. java抓取快递信息

    package zeze; import java.io.IOException; import org.jsoup.Connection; import org.jsoup.Jsoup; impor ...

  8. A Font Lover

    Monaco / Consolas 有名的等宽字体. 效果不错. Linux Libertine 非常好的衬线字体. Liberation Serif 比较好. Gentium 非常好的衬线字体. B ...

  9. 按钮点击事件,打开新的Activity

    按钮点击事件,打开新Activity, 打开网页 findViewById(R.id.btnStartBAty).setOnClickListener(new View.OnClickListener ...

  10. ios xib 中的 size class

    需要阅读UITraitCollection的说明文档,先截图如下: 今天说说xib中的size class的简单设置,先看图 一共有9个小块,水平方向代表width,垂直方向代表height. 对于w ...