[codeforces 360]A. Levko and Array Recovery
[codeforces 360]A. Levko and Array Recovery
试题描述
Levko loves array a1, a2, ... , an, consisting of integers, very much. That is why Levko is playing with array a, performing all sorts of operations with it. Each operation Levko performs is of one of two types:
- Increase all elements from li to ri by di. In other words, perform assignments aj = aj + di for all j that meet the inequation li ≤ j ≤ ri.
- Find the maximum of elements from li to ri. That is, calculate the value .
Sadly, Levko has recently lost his array. Fortunately, Levko has records of all operations he has performed on array a. Help Levko, given the operation records, find at least one suitable array. The results of all operations for the given array must coincide with the record results. Levko clearly remembers that all numbers in his array didn't exceed 109 in their absolute value, so he asks you to find such an array.
输入
The first line contains two integers n and m (1 ≤ n, m ≤ 5000) — the size of the array and the number of operations in Levko's records, correspondingly.
Next m lines describe the operations, the i-th line describes the i-th operation. The first integer in the i-th line is integer ti (1 ≤ ti ≤ 2) that describes the operation type. If ti = 1, then it is followed by three integers li, ri and di (1 ≤ li ≤ ri ≤ n, - 104 ≤ di ≤ 104) — the description of the operation of the first type. If ti = 2, then it is followed by three integers li, ri and mi (1 ≤ li ≤ ri ≤ n, - 5·107 ≤ mi ≤ 5·107) — the description of the operation of the second type.
The operations are given in the order Levko performed them on his array.
输出
In the first line print "YES" (without the quotes), if the solution exists and "NO" (without the quotes) otherwise.
If the solution exists, then on the second line print n integers a1, a2, ... , an (|ai| ≤ 109) — the recovered array.
输入示例
输出示例
YES
数据规模及约定
见“输入”
题解
对于每一个 ti = 1 的操作,我们把对应区间的懒标记暴力地加上;然后对于一个 ti = 2 的操作,我们可以知道这个区间中每一个数的上限。然后把所有上限的效果叠加(即取最小值)就是答案序列。注意最后再判断一下得到的序列是否能满足所有操作,如果不能就无解。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 5010
#define maxq 5010
#define oo 1000000000
int n, q, addv[maxn], lim[maxn], A[maxn];
struct Que {
int tp, l, r, d;
Que() {}
Que(int _1, int _2, int _3, int _4): tp(_1), l(_2), r(_3), d(_4) {}
} qs[maxq]; int main() {
n = read(); q = read();
for(int i = 1; i <= n; i++) lim[i] = oo;
for(int i = 1; i <= q; i++) {
int t = read(), l = read(), r = read(), d = read();
qs[i] = Que(t, l, r, d);
if(t == 1)
for(int j = l; j <= r; j++) addv[j] += d;
if(t == 2)
for(int j = l; j <= r; j++) lim[j] = min(lim[j], d - addv[j]);
} for(int i = 1; i <= n; i++) A[i] = lim[i];
for(int i = 1; i <= q; i++) {
if(qs[i].tp == 1)
for(int j = qs[i].l; j <= qs[i].r; j++) A[j] += qs[i].d;
if(qs[i].tp == 2) {
int mx = -oo;
for(int j = qs[i].l; j <= qs[i].r; j++) mx = max(mx, A[j]);
if(mx != qs[i].d) return puts("NO"), 0;
}
} puts("YES");
for(int i = 1; i <= n; i++) printf("%d%c", lim[i], i < n ? ' ' : '\n'); return 0;
}
[codeforces 360]A. Levko and Array Recovery的更多相关文章
- codeforces 361 C. Levko and Array Recovery(暴力+思维)
题目链接:http://codeforces.com/contest/361/problem/C 题意:对一个数列有这么两个操作 1.(1,l,r,p)..将区间[l,r]所有数都加上p 2.(2,l ...
- Codeforces Round #210 (Div. 2) C. Levko and Array Recovery
题目链接 线段树的逆过程,想了老一会,然后发现应该是包含区间对存在有影响,就不知怎么做了...然后尚大神,说,So easy,你要倒着来,然后再正着来,判断是不是合法就行了.然后我乱写了写,就过了.数 ...
- cf C. Levko and Array Recovery
http://codeforces.com/contest/361/problem/C 这道题倒着一次,然后正着一次,在正着的一次的时候判断合不合法就可以. #include <cstdio&g ...
- codeforces 361 D. Levko and Array(dp+二分)
题目链接:http://codeforces.com/contest/361/problem/D 题意:最多可以修改K次数字,每次修改一个数字变成任意值,C=max(a[i+1]-a[i]):求操作之 ...
- Codeforces 361D Levko and Array(二分)(DP)
Levko and Array time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- 有意思的DP(CF360B Levko and Array)
刚才面试了一个蛮有意思的DP题目,脑子断片,没写出来,不过早上状态还是蛮好的 一个长度为n的序列最多改变k次,使相邻两数之差绝对值的最大值最小 三维的dp我先尝试写一下 Codeforces 360B ...
- CF360B Levko and Array (二分查找+DP)
链接:CF360B 题目: B. Levko and Array time limit per test 2 seconds memory limit per test 256 megabytes i ...
- codeforces 360 B
B - Levko and Array 题目大意:给你你个长度为n的数列a,你最多改变k个值,max{ abs ( a[ i + 1] - a[ i ] ) } 的最小值为多少. 思路:这个题很难想到 ...
- [Codeforces 266E]More Queries to Array...(线段树+二项式定理)
[Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...
随机推荐
- Linux 中,如何显示 (gcc)make时实际执行命令
问题: 调试编译问题,如何获取,GCC(或许make)时,实际编译器和链接器正在执行的命令? 解决方法: 方法一:通用方法 使用dry run,如下 $ make -n 这将显示make 命令正在试图 ...
- winndows7、office2013 激活信息还原
windows7激活信息还原 1.现在“计算机”,右键中的“管理”中的“服务”中禁止Software Protection 2.还原路径C:\Windows\ServiceProfiles\Netwo ...
- 自然语言18_Named-entity recognition
https://en.wikipedia.org/wiki/Named-entity_recognition http://book.51cto.com/art/201107/276852.htm 命 ...
- 入门:HTML表单与Java 后台交互(复选框提交)
仅仅给出部分关键代码: HTML form code: <form action="JavaFormTest" method="post" name=&q ...
- js创建和获取cookie
创建cookie document.cookie='like=1'; //创建 cookie键名和值 var str = document.cookie; 获取cookie 读取cookiefunct ...
- inpyt 按钮变透明 边框
变透明: .btn{width: 80px;height: 36px;margin-left: 22px;border: none;cursor: pointer;background: none;}
- Fragment碎片的创建和动态更新
Fragment,在平板应用中较为参见,把视图分为两个甚至多个模块. 一,一个简单的fragment 1.创建两个局部文件,用于等待被调用 (1)left_fragment (2)right_frag ...
- live555编译、移植
1.windows下编译 转 http://www.cnblogs.com/skyseraph/archive/2012/04/11/2442840.html 2.linux下编译,以及交叉编译,海思 ...
- Productivity Power Tools 是微软官方推出的 Visual Studio 扩展
Productivity Power Tools 是微软官方推出的 Visual Studio 扩展 免费的精品: Productivity Power Tools 动画演示
- Asp.NET的Trace追踪
http://m.blog.csdn.net/article/details?id=7026402 当我们扑捉程序错误时,调试器是开发者们最得力的助手.然而,ASP.NET的跟踪,在调试时是一个很棒的 ...