[codeforces 360]A. Levko and Array Recovery

试题描述

Levko loves array a1, a2, ... , an, consisting of integers, very much. That is why Levko is playing with array a, performing all sorts of operations with it. Each operation Levko performs is of one of two types:

  1. Increase all elements from li to ri by di. In other words, perform assignments aj = aj + di for all j that meet the inequation li ≤ j ≤ ri.
  2. Find the maximum of elements from li to ri. That is, calculate the value .

Sadly, Levko has recently lost his array. Fortunately, Levko has records of all operations he has performed on array a. Help Levko, given the operation records, find at least one suitable array. The results of all operations for the given array must coincide with the record results. Levko clearly remembers that all numbers in his array didn't exceed 109 in their absolute value, so he asks you to find such an array.

输入

The first line contains two integers n and m (1 ≤ n, m ≤ 5000) — the size of the array and the number of operations in Levko's records, correspondingly.

Next m lines describe the operations, the i-th line describes the i-th operation. The first integer in the i-th line is integer ti (1 ≤ ti ≤ 2) that describes the operation type. If ti = 1, then it is followed by three integers liri and di (1 ≤ li ≤ ri ≤ n,  - 104 ≤ di ≤ 104) — the description of the operation of the first type. If ti = 2, then it is followed by three integers liri and mi (1 ≤ li ≤ ri ≤ n, - 5·107 ≤ mi ≤ 5·107) — the description of the operation of the second type.

The operations are given in the order Levko performed them on his array.

输出

In the first line print "YES" (without the quotes), if the solution exists and "NO" (without the quotes) otherwise.

If the solution exists, then on the second line print n integers a1, a2, ... , an (|ai| ≤ 109) — the recovered array.

输入示例


输出示例

YES
   

数据规模及约定

见“输入

题解

对于每一个 ti = 1 的操作,我们把对应区间的懒标记暴力地加上;然后对于一个 ti = 2 的操作,我们可以知道这个区间中每一个数的上限。然后把所有上限的效果叠加(即取最小值)就是答案序列。注意最后再判断一下得到的序列是否能满足所有操作,如果不能就无解。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 5010
#define maxq 5010
#define oo 1000000000
int n, q, addv[maxn], lim[maxn], A[maxn];
struct Que {
int tp, l, r, d;
Que() {}
Que(int _1, int _2, int _3, int _4): tp(_1), l(_2), r(_3), d(_4) {}
} qs[maxq]; int main() {
n = read(); q = read();
for(int i = 1; i <= n; i++) lim[i] = oo;
for(int i = 1; i <= q; i++) {
int t = read(), l = read(), r = read(), d = read();
qs[i] = Que(t, l, r, d);
if(t == 1)
for(int j = l; j <= r; j++) addv[j] += d;
if(t == 2)
for(int j = l; j <= r; j++) lim[j] = min(lim[j], d - addv[j]);
} for(int i = 1; i <= n; i++) A[i] = lim[i];
for(int i = 1; i <= q; i++) {
if(qs[i].tp == 1)
for(int j = qs[i].l; j <= qs[i].r; j++) A[j] += qs[i].d;
if(qs[i].tp == 2) {
int mx = -oo;
for(int j = qs[i].l; j <= qs[i].r; j++) mx = max(mx, A[j]);
if(mx != qs[i].d) return puts("NO"), 0;
}
} puts("YES");
for(int i = 1; i <= n; i++) printf("%d%c", lim[i], i < n ? ' ' : '\n'); return 0;
}

[codeforces 360]A. Levko and Array Recovery的更多相关文章

  1. codeforces 361 C. Levko and Array Recovery(暴力+思维)

    题目链接:http://codeforces.com/contest/361/problem/C 题意:对一个数列有这么两个操作 1.(1,l,r,p)..将区间[l,r]所有数都加上p 2.(2,l ...

  2. Codeforces Round #210 (Div. 2) C. Levko and Array Recovery

    题目链接 线段树的逆过程,想了老一会,然后发现应该是包含区间对存在有影响,就不知怎么做了...然后尚大神,说,So easy,你要倒着来,然后再正着来,判断是不是合法就行了.然后我乱写了写,就过了.数 ...

  3. cf C. Levko and Array Recovery

    http://codeforces.com/contest/361/problem/C 这道题倒着一次,然后正着一次,在正着的一次的时候判断合不合法就可以. #include <cstdio&g ...

  4. codeforces 361 D. Levko and Array(dp+二分)

    题目链接:http://codeforces.com/contest/361/problem/D 题意:最多可以修改K次数字,每次修改一个数字变成任意值,C=max(a[i+1]-a[i]):求操作之 ...

  5. Codeforces 361D Levko and Array(二分)(DP)

    Levko and Array time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  6. 有意思的DP(CF360B Levko and Array)

    刚才面试了一个蛮有意思的DP题目,脑子断片,没写出来,不过早上状态还是蛮好的 一个长度为n的序列最多改变k次,使相邻两数之差绝对值的最大值最小 三维的dp我先尝试写一下 Codeforces 360B ...

  7. CF360B Levko and Array (二分查找+DP)

    链接:CF360B 题目: B. Levko and Array time limit per test 2 seconds memory limit per test 256 megabytes i ...

  8. codeforces 360 B

    B - Levko and Array 题目大意:给你你个长度为n的数列a,你最多改变k个值,max{ abs ( a[ i + 1] - a[ i ] ) } 的最小值为多少. 思路:这个题很难想到 ...

  9. [Codeforces 266E]More Queries to Array...(线段树+二项式定理)

    [Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...

随机推荐

  1. gitlab迁移库地址后远程的切换

    本地需要把origin删除,然后再添加新的origin git remote rm origingit remote add origin [url] git push --set-upstream ...

  2. git的基本操作

    今天给同事培训了一下git的使用流程,简单记录一下 1,基本概念, 远程库和本地库. 2, git clone git://url/*.git clone远程的代码库到本地 3. 创建本地分支 当前是 ...

  3. 使用ASP.NET Web Api构建基于REST风格的服务实战系列教程【八】——Web Api的安全性

    系列导航地址http://www.cnblogs.com/fzrain/p/3490137.html 前言 这一篇文章我们主要来探讨一下Web Api的安全性,到目前为止所有的请求都是走的Http协议 ...

  4. Android屏幕适配全攻略(最权威的官方适配指导)(转),共大家分享。

    Android的屏幕适配一直以来都在折磨着我们这些开发者,本篇文章以Google的官方文档为基础,全面而深入的讲解了Android屏幕适配的原因.重要概念.解决方案及最佳实践,我相信如果你能认真的学习 ...

  5. 后台程序员的HTTP缓存

    1.后端程序员只需要关注请求头: if-None-Match //上一次response头中的ETag的值. 响应头: Etag //是URL的Entity Tag,用于标示URL对象是否改变,区分不 ...

  6. C#值类型参数传递的性能开销

    Performance issues Let's dig a little deeper. When data is passed into methods as value type paramet ...

  7. -[UIKeyboardLayoutStar release]: message sent to deallocated instance

    网上大家都说是因为替换了系统的objextAtIndex方法,但是为了减少应用崩溃的可能,是要进行Hook的,所以不想取消Hook. 解决办法,关掉键盘进入后台. - (void)applicatio ...

  8. ubuntu qq

    系统:Ubuntu 14.04  64位 1.下载qq国际版(直接网络搜索就可以) 2.解压并安装: # cp wine-qqintl.zip /usr/local/ # pwd/usr/local/ ...

  9. CMake安装(linux)

    环境:CentOS6.5 1.下载网址: http://www.cmake.org/download/ (选择linux版本,编译安装) 2.安装 # tar zxvf cmake-.tar.gz # ...

  10. rz和sz上传下载文件工具lrzsz

    ######################### rz和sz上传下载文件工具lrzsz ####################################################### ...