Description

求拼成阶梯状的方案数.

Sol

高精度+Catalan数.

我们可以把最后一行无线延伸,所有就很容易看出Catalan数了.

\(f_n=f_0f_{n-1}+f_1f_{n-2}+f_2f_{n-3}+...+f_{n-1}f_0\)

这就是Catalan数了,高精贴板子...

Code

/**************************************************************
Problem: 2822
User: BeiYu
Language: C++
Result: Accepted
Time:20 ms
Memory:1308 kb
****************************************************************/ #include<cstdio>
#include<cmath>
#include<vector>
#include<algorithm>
#include<iostream>
using namespace std; typedef long long LL;
const int B = 10;
const int W = 1; struct Big{
vector<int> s;
void clear(){ s.clear(); } Big(LL num=0){ *this=num; }
Big operator = (LL x){
clear();
do{ s.push_back(x%B),x/=B; }while(x);
return *this;
}
Big operator = (const string &str){
clear();
int x,len=(str.length()-1)/W+1,l=str.length();
for(int i=0;i<len;i++){
int tt=l-i*W,st=max(0,tt-W);
sscanf(str.substr(st,tt-st).c_str(),"%d",&x);
s.push_back(x);
}return *this;
}
}; istream& operator >> (istream & in,Big &a){
string s;
if(!(in>>s)) return in;
a=s;return in;
} ostream& operator << (ostream &out,const Big &a){
cout<<a.s.back();
for(int i=a.s.size()-2;~i;i--){
cout.width(W),cout.fill('0'),cout<<a.s[i];
}return out;
} bool operator < (const Big &a,const Big &b){
int la=a.s.size(),lb=b.s.size();
if(la<lb) return 1;if(la>lb) return 0;
for(int i=la-1;~i;i--){
if(a.s[i]<b.s[i]) return 1;
if(a.s[i]>b.s[i]) return 0;
}return 0;
}
bool operator <= (const Big &a,const Big &b){ return !(b<a); }
bool operator > (const Big &a,const Big &b){ return b<a; }
bool operator >= (const Big &a,const Big &b){ return !(a<b); }
bool operator == (const Big &a,const Big &b){ return !(a>b) && !(a<b); }
bool operator != (const Big &a,const Big &b){ return a>b || a<b ; } Big operator + (const Big &a,const Big &b){
Big c;c.clear();
int lim=max(a.s.size(),b.s.size()),la=a.s.size(),lb=b.s.size(),i,g,x;
for(i=0,g=0;;i++){
if(g==0 && i>=lim) break;
x=g;if(i<la) x+=a.s[i];if(i<lb) x+=b.s[i];
c.s.push_back(x%B),g=x/B;
}i=c.s.size()-1;
while(c.s[i]==0 && i) c.s.pop_back(),i--;
return c;
}
Big operator - (const Big &a,const Big &b){
Big c;c.clear();
int i,g,x,la=a.s.size(),lb=b.s.size();
for(i=0,g=0;i<la;i++){
x=a.s[i]-g;
if(i<lb) x-=b.s[i];
if(x>=0) g=0;else g=1,x+=B;
c.s.push_back(x);
}i=c.s.size()-1;
while(c.s[i]==0 && i) c.s.pop_back(),i--;
return c;
}
Big operator * (const Big &a,const Big &b){
Big c;
int i,j,la=a.s.size(),lb=b.s.size(),lc=la+lb;
c.s.resize(lc,0);
for(i=0;i<la;i++) for(j=0;j<lb;j++) c.s[i+j]+=a.s[i]*b.s[j];
for(i=0;i<lc;i++) c.s[i+1]+=c.s[i]/B,c.s[i]%=B;
i=lc-1;while(c.s[i]==0 && i) c.s.pop_back(),i--;
return c;
}
Big operator / (const Big &a,const Big &b){
Big c,f=0;
int la=a.s.size(),i;
c.s.resize(la,0);
for(i=la-1;~i;i--){
f=f*B,f.s[0]=a.s[i];
while(f>=b) f=f-b,c.s[i]++;
}i=la-1;while(c.s[i]==0 && i) c.s.pop_back(),i--;
return c;
}
Big operator % (const Big &a,const Big &b){
Big c=a-(a/b)*b;
return c;
}
Big operator ^ (Big &a,Big &b){
Big c=1;
for(;b!=0;b=b/2,a=a*a){
if(b.s[0] & 1) c=c*a;
}return c;
}
Big operator += (Big &a,const Big &b){ return a=a+b; }
Big operator -= (Big &a,const Big &b){ return a=a-b; }
Big operator *= (Big &a,const Big &b){ return a=a*b; }
Big operator /= (Big &a,const Big &b){ return a=a/b; }
Big operator %= (Big &a,const Big &b){ return a=a%b; } const int N = 1005; int cnt;
int b[N],pr[N],minp[N],c[N]; void Pre(int t){
minp[1]=0;
for(int i=2;i<=t;i++){
if(!b[i]) pr[++cnt]=i,minp[i]=cnt;
for(int j=1;j<=cnt && i*pr[j]<=t;j++){
b[i*pr[j]]=1,minp[i*pr[j]]=j;
if(i%pr[j]==0) break;
}
}
}
void Add(int x,int v){ while(x>1) c[minp[x]]+=v,x/=pr[minp[x]]; }
int main(){
ios::sync_with_stdio(false);
int n;Big ans=1,a,b;
cin>>n;
Pre(n*2); for(int i=n+1;i<=2*n;i++) Add(i,1);
for(int i=1;i<n;i++) Add(i,-1);
Add(n,-1),Add(n+1,-1); for(int i=1;i<=cnt;i++) a=pr[i],b=c[i],ans*=a^b; cout<<ans<<endl;
return 0;
}

  

BZOJ 2822: [AHOI2012]树屋阶梯的更多相关文章

  1. BZOJ 2822: [AHOI2012]树屋阶梯 [Catalan数 高精度]

    2822: [AHOI2012]树屋阶梯 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 779  Solved: 453[Submit][Status] ...

  2. bzoj 2822 [AHOI2012]树屋阶梯 卡特兰数

    因为规定n层的阶梯只能用n块木板 那么就需要考虑,多出来的一块木板往哪里放 考虑往直角处放置新的木板 不管怎样,只有多的木板一直扩展到斜边表面,才会是合法的新状态,发现,这样之后,整个n层阶梯就被分成 ...

  3. 【BZOJ 2822】2822: [AHOI2012]树屋阶梯(卡特兰数+高精度)

    2822: [AHOI2012]树屋阶梯 Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处 ...

  4. 2822: [AHOI2012]树屋阶梯

    Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1161  Solved: 694[Submit][Status][Discuss] Descriptio ...

  5. bzoj2822[AHOI2012]树屋阶梯(卡特兰数)

    2822: [AHOI2012]树屋阶梯 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 879  Solved: 513[Submit][Status] ...

  6. [AHOI2012]树屋阶梯 题解(卡特兰数)

    [AHOI2012]树屋阶梯 Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处的树屋露营. ...

  7. 洛谷P2532 [AHOI2012]树屋阶梯(Catalan数)

    P2532 [AHOI2012]树屋阶梯 题目描述 输入输出格式 输入格式: 一个正整数N(1<=N<=500),表示阶梯的高度. 输出格式: 一个正整数,表示搭建方法的个数.(注:搭建方 ...

  8. P2532 [AHOI2012]树屋阶梯

    题目:P2532 [AHOI2012]树屋阶梯 思路: 打表之后不难看出是裸的Catalan数.简单证明一下: 对于任意一种合法方案,都可以表示为在左下角先放一个\(k*(n+1-k),k\in[1, ...

  9. 【BZOJ 2822】[AHOI2012]树屋阶梯 卡特兰数+高精

    这道题随便弄几个数就发现是卡特兰数然而为什么是呢? 我们发现我们在增加一列时,如果这一个东西(那一列)他就一格,那么就是上一次的方案数,并没有任何改变,他占满了也是,然后他要是占两格呢,就是把原来的切 ...

随机推荐

  1. Oracle 的表备份的方法

    1.直接备份(防止误操作后数据库表不能恢复) create table new_table as select * from old_table; 2.创建表头,然后插入列(繁琐的做法) create ...

  2. linux配置oracle11G监听及本地网络服务 及 数据库建库

    配置监听及本地网络服务 在oracle用户的图形界面oracle用户中,新开启一个终端,输入命令netca 会弹出如下界面. 数据库建库 在oracle用户的图形界面oracle用户中,新开启一个终端 ...

  3. Java包装类

    自动装箱:指开发人员可以把一个基本数据类型直接赋给对应的包装类 自动拆箱:指开发人员可以把一个包装类对象直接赋给对应的基本数据类型 要把基本数据类型称为对象的时候,需要把基本数据类型进行包装, 运用: ...

  4. Unity State Machine

    https://unity3d.com/learn/tutorials/modules/beginner/5-pre-order-beta/state-machine-behaviours http: ...

  5. 用Open Live Account写博文的第一篇文章,立个flag

    在设置的时候出了点问题,还好有blog这种神器,直接上网址http://www.cnblogs.com/yishujun/p/5328617.html 高亮插件来自 http://www.cnblog ...

  6. Http常用状态码

    HTTP状态码(HTTP Status Code) 一些常见的状态码为: 200 - 服务器成功返回网页 404 - 请求的网页不存在 503 - 服务不可用 所有状态解释:点击查看 1xx(临时响应 ...

  7. Xunsearch 中文全文搜索

    原文地址:http://www.yiichina.com/code/661 官网地址:http://www.xunsearch.com/ 1.安装 wget http://www.xunsearch. ...

  8. SQLServer中获取特定表的所有列名

    1.获取特定表的所有列名: Select Name FROM SysColumns Where id=Object_Id('tableName') 参考:http://blog.csdn.net/wu ...

  9. Apple Pay

    Apple Pay运行环境:iPhone6以上设备,操作系统最低iOS9.0以上,部分信息设置需要iOS9.2以上.目前还不支持企业证书添加. 环境搭建好后可以在模拟器上面运行,xcode7.2.1+ ...

  10. 关于shell脚本时遇value too great for base (error token is "08")

    今天在书写一个定时cp脚本时遇到了一个问题,value too great for base (error token is "08") 在网上查看到原来是以0开头的数字 系统会默 ...