poj3335 半交平面,多边形内核
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 5300 | Accepted: 2112 |
Description
This year, ACM/ICPC World finals will be held in a hall in form of a simple polygon. The coaches and spectators are seated along the edges of the polygon. We want to place a rotating scoreboard somewhere in the hall such that a spectator sitting anywhere on the boundary of the hall can view the scoreboard (i.e., his line of sight is not blocked by a wall). Note that if the line of sight of a spectator is tangent to the polygon boundary (either in a vertex or in an edge), he can still view the scoreboard. You may view spectator's seats as points along the boundary of the simple polygon, and consider the scoreboard as a point as well. Your program is given the corners of the hall (the vertices of the polygon), and must check if there is a location for the scoreboard (a point inside the polygon) such that the scoreboard can be viewed from any point on the edges of the polygon.
Input
The first number in the input line, T is the number of test cases. Each test case is specified on a single line of input in the form n x1 y1 x2 y2 ... xn yn where n (3 ≤ n ≤ 100) is the number of vertices in the polygon, and the pair of integers xi yi sequence specify the vertices of the polygon sorted in order.
Output
The output contains T lines, each corresponding to an input test case in that order. The output line contains either YES or NO depending on whether the scoreboard can be placed inside the hall conforming to the problem conditions.
Sample Input
2
4 0 0 0 1 1 1 1 0
8 0 0 0 2 1 2 1 1 2 1 2 2 3 2 3 0
Sample Output
YES
NO
Source
#include <iostream>
#include <algorithm>
#include <cmath>
#include <stdio.h>
using namespace std;
#define exp 1e-10 struct node
{
double x;
double y;
}; node point[];//记录最开始的多边形
node q[]; //临时保存新切割的多边形
node p[]; //保存新切割出的多边形
int n,m;//n的原先的点数,m是新切割出的多边形的点数
double a,b,c; void getline(node x,node y) //获取直线ax+by+c==0
{
a=y.y-x.y;
b=x.x-y.x;
c=y.x*x.y-x.x*y.y;
} node intersect(node x,node y) //获取直线ax+by+c==0 和点x和y所连直线的交点
{
double u=fabs(a*x.x+b*x.y+c);
double v=fabs(a*y.x+b*y.y+c);
node ans;
ans.x=(x.x*v+y.x*u)/(u+v);
ans.y=(x.y*v+y.y*u)/(u+v);
return ans;
} void cut() //用直线ax+by+c==0切割多边形
{
int cutm=,i;
for(i=;i<=m;i++)
{
if(a*p[i].x+b*p[i].y+c>=) //题目是顺时钟给出点的
{ //所以一个点在直线右边的话,那么带入值就会大于等于0
q[++cutm]=p[i]; //说明这个点还在切割后的多边形内,将其保留
}
else
{
if(a*p[i-].x+b*p[i-].y+c>) //该点不在多边形内,但是它和它相邻的点构成直线与
{ //ax+by+c==0所构成的交点可能在新切割出的多边形内,
q[++cutm]=intersect(p[i-],p[i]); //所以保留交点
}
if(a*p[i+].x+b*p[i+].y+c>)
{
q[++cutm]=intersect(p[i+],p[i]);
}
}
}
for(i=;i<=cutm;i++)
{
p[i]=q[i];
}
p[cutm+]=q[];
p[]=q[cutm];
m=cutm;
} void solve()
{
int i;
for(i=;i<=n;i++)
{
p[i]=point[i];
}
point[n+]=point[];
p[n+]=p[];
p[]=p[n];
m=n;
for(i=;i<=n;i++)
{
getline(point[i],point[i+]); //根据point[i]和point[i+1]确定直线ax+by+c==0
cut(); //用直线ax+by+c==0切割多边形
}
} int main()
{
int cas,i;
//freopen("D:\\in.txt","r",stdin);
scanf("%d",&cas);
while(cas--)
{
scanf("%d",&n);
for(i=;i<=n;i++)
{
scanf("%lf%lf",&point[i].x,&point[i].y);
}
solve();
if(m==)
{
printf("NO\n");
}
else
{
printf("YES\n");
}
}
return ;
}
poj3335 半交平面,多边形内核的更多相关文章
- bzoj 1007 半交平面简化版
本题就是求半交平面的交包含哪些直线,而且有点特殊(一般的半交平面用双端队列,因为可能转到最开始的直线,但本题不会,所以只需要一端操作就行了). /*************************** ...
- 计算几何-多边形内核判定-HPI-poj3335
This article is made by Jason-Cow.Welcome to reprint.But please post the article's address. 先解决一个问题, ...
- poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】
<题目链接> 题目大意:给出一个四面环海的凸多边形岛屿,求出这个岛屿中的点到海的最远距离. 解题分析: 仔细思考就会发现,其实题目其实就是让我们求该凸多边形内内切圆的最大半径是多少.但是, ...
- Rotating Scoreboard - POJ 3335(半面相交求多边形内核)
题目大意:RT 分析:所谓内核可以理解为在多边形内存在点可以在这个点上看到多边形内部所有的部分,当然怎么求出来就是问题的关键了.我们知道多边形的每条边都是边界值,边的左边和右边肯定是一部分属于多边形一 ...
- poj3335 半平面交
题意:给出一多边形.判断多边形是否存在一点,使得多边形边界上的所有点都能看见该点. sol:在纸上随手画画就可以找出规律:按逆时针顺序连接所有点.然后找出这些line的半平面交. 题中给出的点已经按顺 ...
- POJ 3130 How I Mathematician Wonder What You Are!(半平面交求多边形的核)
题目链接 题意 : 给你一个多边形,问你该多边形中是否存在一个点使得该点与该多边形任意一点的连线都在多边形之内. 思路 : 与3335一样,不过要注意方向变化一下. #include <stdi ...
- POJ 3335 Rotating Scoreboard(半平面交求多边形核)
题目链接 题意 : 给你一个多边形,问你在多边形内部是否存在这样的点,使得这个点能够看到任何在多边形边界上的点. 思路 : 半平面交求多边形内核. 半平面交资料 关于求多边形内核的算法 什么是多边形的 ...
- 【kuangbin专题】计算几何_半平面交
1.poj3335 Rotating Scoreboard 传送:http://poj.org/problem?id=3335 题意:就是有个球场,球场的形状是个凸多边形,然后观众是坐在多边形的边上的 ...
- POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交
题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...
随机推荐
- [Objective-C 面试简要笔记]
Obj-C: 1.消息机制 [shape draw] 向该对象发送消息,该对象查找并运行此函数 差不多就是shape.draw(); 2.中缀语法 [textThing setStringValue ...
- Unity 插件制作笔记(持续更新)
示例: [MenuItem(Menu1/Menu2)] static void TestMenu1() { Debug.log("点击了菜单"); } 导航菜单添加 [MenuIt ...
- sscanf()函数的使用及其实例
资料引自: 传送门 sscanf函数原型: Int sscanf( const char * src, const char * format, ...); int scanf( const char ...
- mysql错误
安装mysql之后提示(ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password:错误 具体就是: 安 ...
- 使用PM控制台 查找和安装一个 NuGet Package
1. Get-Package -ListAvailable -Filter elmah -ListAvailable获取所有可用的package,-Filter 关键字过滤 2. Install-P ...
- 【Beta】Scrum01
Info 时间:2016.11.26 21:30 时长:10min 地点:大运村1号公寓5楼楼道 类型:日常Scrum会议 NXT:2016.11.28 21:30 Task Report Name ...
- primefaces p:tableData 显示 List<List>
@javax.faces.bean.ViewScoped public class Controlador { private List<List> estadistico; @PostC ...
- nginx 伪静态
伪静态是一种可以把文件后缀改成任何可能的一种方法,如果我想把php文件伪静态成html文件,这种相当简单的,下面来介绍nginx 伪静态配置方法有需要了解的朋友可参考 nginx只需要打开nginx. ...
- bootstrap学习总结-03 常用标签1
1 显示段落 在HTML中,段落使用p标签包起来,重要的文字使用strong标签,em标签.<em> 标签告诉浏览器把其中的文本表示为强调的内容.对于所有浏览器来说,这意味着要把这段文字用 ...
- MYSQL select查询练习题
10. 查询Score表中的最高分的学生学号和课程号.(子查询或者排序) select sno,cno from score where degree=(select max(degree) from ...