问题原因:

最近由于工作实际需求,需要对某个计算单元的计算方法进行重构。原因是由于这个计算单元的计算耗时较长,单个计算耗时大约在1s-2s之间,而新的需求下,要求在20s内对大约1500个计算单元计算完毕。如果不对原有计算单元的计算方法进行优化及效率提升,那么以8核CPU(超线程16线程)来说,在单个计算1s的理想条件,服务器16线程完成任务的理论上限也需要90s+,何况多线程还并不是简单的效率叠加,实际测试情况下,耗时往往在150s以上。因此,对原有计算单元的计算优化是必须的。

问题分析:

通过对原有计算单元的实现过程查看,计算任务存在大量的数据库读取及大量的比对、计算等操作,涉及的数据表的数量级从数百到百万不等,这些数据表有一个相同的特点就是相对固定,并不是实时业务数据。通过对原有计算过程的分析,主要的耗时就在各种条件比对及比对后进行的数据库IO操作。

因此,要提高效率,首先想到的就是如何减少数据库的IO次数,但实际的计算任务是一个很严格的时序型逻辑,即每一步的处理输入是上一步的数据处理结果。因此要在单个计算任务中进行并行计算的改造很难,并且,由于单次数据库IO的时间开销也不大,因此进行异步化改造也不合适,反而会增加代码的复杂度。

所以最终还是把思路集中在如何对计算任务本身进行优化。

解决方式:

经过对计算任务的分析,在这种场景上下文中,决定以哈希定位作为解决方式(这是一种可能的解决方式,但并不一定是最优的)。

通过前文对计算任务的分析,所涉及的数据都是相对固定的,因此首先考虑将所有数据加载到内存(由于数据量并不是非常的大,服务器内存还能承受,可根据实际需求加载到mem或redis中)。如果仅仅是将数据加载到内存,再用linq2object替代原有的数据库IO,提升并不大,因为计算逻辑中最耗时的操作是对数据的范围查询,即数据并没有精确匹配,而是需要找到目标值对应数据的上下限,并进行线性插值运算。

如果能将范围数据查询的工作以更快速更精确的方式来实现,就省下了计算逻辑中最大的时间开销。因此考虑才用呢哈希定位的方式进行。

具体改造过程不再赘述,工作难点主要在于哈希KEY的构造,以及如何通过哈希寻址实现数据库查询中的‘> and <’条件操作。具体来说,通过将范围值扩大量纲变为整数,并以最小步长提前做线性插值,即可形成满足要求的哈希KEY,同时,通过对需要定位的值,对步长进行除法取整,即可得到目标值的下限值,再对下限值加上步长,即可得到上限值,从而通过一次哈希寻址,得到之前需要在数据库进行‘> and <’操作的结果。

解决结果:

通过以上改造,在该计算任务场景中,对1000+计算单元进行计算的时间开销已降低到1-4秒(由于是WCF服务调用,因此需要视网络通信等状况而定),完全可以满足需求。

通过对这次计算任务的重构,可以看出,对计算密集型/IO密集型任务,异步化及并行计算等优化方法很难进行,并且提高会非常有限(计算密集型任务),因此,通过对原子任务本身的优化来达到最终目标也是一个重要的思路。

计算&IO密集型任务的 优化的更多相关文章

  1. 浅谈Java两种并发类型——计算密集型与IO密集型

    转载:https://blog.csdn.net/u013070853/article/details/49304099 核心是可以分别独立运行程序指令的计算单元.线程是操作系统能够进行运算调度的最小 ...

  2. Python IO密集型任务、计算密集型任务,以及多线程、多进程

    对于IO密集型任务: 直接执行用时:10.0333秒 多线程执行用时:4.0156秒 多进程执行用时:5.0182秒 说明多线程适合IO密集型任务. 对于计算密集型任务 直接执行用时:10.0273秒 ...

  3. IO密集型 计算密集型

    参考:https://www.cnblogs.com/zhangyux/p/6195860.html 参考:廖雪峰 协程 gevent IO密集型任务指的是磁盘IO或者网络IO占主要的任务,计算量很小 ...

  4. [Python]IO密集型任务 VS 计算密集型任务

    所谓IO密集型任务,是指磁盘IO.网络IO占主要的任务,计算量很小.比如请求网页.读写文件等.当然我们在Python中可以利用sleep达到IO密集型任务的目的. 所谓计算密集型任务,是指CPU计算占 ...

  5. cpu,io密集型计算概念

    I/O密集型 (CPU-bound) I/O bound 指的是系统的CPU效能相对硬盘/内存的效能要好很多,此时,系统运作,大部分的状况是 CPU 在等 I/O (硬盘/内存) 的读/写,此时 CP ...

  6. CPU计算密集型和IO密集型

    CPU计算密集型和IO密集型 第一种任务的类型是计算密集型任务,其特点是要进行大量的计算,消耗CPU资源,比如计算圆周率.对视频进行高清解码等等,全靠CPU的运算能力.这种计算密集型任务虽然也可以用多 ...

  7. 题外话:计算密集型 vs IO密集型

    我们把任务分为计算密集型和IO密集型,erlang作为IO密集型的语言,适合网关等相关的场景,而对计算达到某一量级后,可能处理效率下降的很明显. erlang不适合数值计算.erlang是解释型的,虽 ...

  8. 计算密集型和 io 密集型项目的使用场景分析和代码演示

    from threading import Thread from multiprocessing import Process import time 计算密集型 def work1(): res= ...

  9. 并发编程~~~多线程~~~计算密集型 / IO密集型的效率, 多线程实现socket通信

    一 验证计算密集型 / IO密集型的效率 IO密集型: IO密集型: 单个进程的多线程的并发效率高. 计算密集型: 计算密集型: 多进程的并发并行效率高. 二 多线程实现socket通信 服务器端: ...

随机推荐

  1. java 27 - 1 反射之 类的加载器

    说到反射,首先说类的加载器. 类的加载: 当程序要使用某个类时,如果该类还未被加载到内存中,则系统会通过加载,连接,初始化三步来实现对这个类进行初始化. 加载: 就是指将class文件读入内存,并为之 ...

  2. NOIP模拟赛 行走

    题目描述 “我有个愿望,我希望走到你身边.” 这是个奇异的世界,世界上的n-1条路联结起来形成一棵树,每条路有一个对应的权值ci. 现在我会给出q组询问或操作. 每次询问我会从一个x点走到y点,初始在 ...

  3. CSS3之文本阴影text-shadow

  4. addClass, removeClass, toggleClass(从jquery中抠出来)

    <div id="d3" class="cur"></div> var mylibs = (function(){ var rtrim ...

  5. NET Core HTTP 管道

    ASP.NET Core HTTP 管道中的那些事儿   前言 马上2016年就要过去了,时间可是真快啊. 上次写完 Identity 系列之后,反响还不错,所以本来打算写一个 ASP.NET Cor ...

  6. [py]简易pick lucky num程序

    程序功能: 1,用户输入数字,当用户输入指定数字时候,输出他输入的循环那次 2,第二次询问是否还要输 3,如果no 则 终止 4,如果yes则继续输入 判断输入是否大于首次输入的 如果大于则开始循环输 ...

  7. matlab jet color mapping C / C++ / VC 实现

    在matlab中调用imagesc()将一幅灰阶图像以彩色显示时,默认使用的color mapping是Jet,其color bar 为: Jet的color mapping图为: Color map ...

  8. swift 初探NSURLSession

    进行封装, 新建一个类.network class Network1: NSObject { // 没有参数+结果的get  自定义 HTTP method 和 URL+闭包 static func ...

  9. VMware-Transport(VMDB) error -44:Message.The VMware Authorization Service is not running解决方案

    出现的错误如下: 原因:本机中有一个VMware服务未开启导致的. 解决方案: 1.打开“运行”->输入services.msc !!!文章转自浩瀚先森博客,转载请注明,谢谢.http://ww ...

  10. SQL Server中的索引结构与疑惑

    说实话我从没有在实际项目中使用过索引,仅知道索引是一个相当重要的技术点,因此我也看了不少文章知道了索引的区别.分类.优缺点以及如何使用索引.但关于索引它最本质的是什么笔者一直没明白,本文是笔者带着这些 ...