在机器学习领域中,概率模型是一个常用的利器。用它来对问题进行建模,有几点好处:1)当给定参数分布的假设空间后,可以通过很严格的数学推导,得到模型的似然分布,这样模型可以有很好的概率解释;2)可以利用现有的EM算法或者Variational method来学习。通常为了方便推导参数的后验分布,会假设参数的先验分布是似然的某个共轭分布,这样后验分布和先验分布具有相同的形式,这对于建模过程中的数学推导可以大大的简化,保证最后的形式是tractable。

在概率模型中,Dirichlet这个词出现的频率非常的高。初始机器学习的同学或者说得再广一些,在学习概率模型的时候,很多同学都不清楚为啥一个表现形式如此奇怪的分布Dirichlet分布会出现在我们的教科书中,它是靠啥关系攀上了多项分布(Multinomial distribution)这个亲戚的,以至于它可以“堂而皇之”地扼杀我大天朝这么多数学家和科学家梦想的?为了引出背后这层关系,我们需要先介绍一个概念——共轭先验(Conjugate Prior)

  • Conjugate Prior: In Bayesian probability theory, if the posterior distributions p(θ|x) are in the same family as the prior probability distribution p(θ), the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood. ----from wiki
  • 用中文来讲,在贝叶斯统计理论中,如果某个随机变量Θ的后验概率 p(θ|x)和气先验概率p(θ)属于同一个分布簇的,那么称p(θ|x)和p(θ)为共轭分布,同时,也称p(θ)为似然函数p(x|θ)的共轭先验。

介绍了这个重要的概念之后,我们回到文章的正题。首先需要弄清楚什么是二项分布(Binomial distribution)。这个概念是从伯努利分布推进的。伯努利分布是一个离散型的随机分布,其中的随机变量只有两类取值,非正即负{+,-}。二项分布即重复n次的伯努利试验,记为 X~b(n,p)。概率密度函数(概率质量函数)为P(K=k)=\binom{n}{k}p^k(1-p)^{n-k}。再来看看Beta分布,给定参数\alpha>0和\beta>0,取值范围为[0,1]的随机变量x的概率密度函数f(x;\alpha,\beta)=\frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1},其中\frac{1}{B(\alpha,\beta)}=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)},\Gamma(z)=\int_0^{\infty}t^{z-1}e^{-t}dt。这里假定,先验分布和似然概率如下所示:

p(x)=\frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}
p(y|x)=\binom{n}{k}x^k(1-x)^{n-k}

那么很容易知道后验概率为

p(x|y)=\frac{1}{B(\alpha+k,\beta+n-k)}x^{\alpha+k-1}(1-x)^{\beta+n-k-1}

弄清楚了Beta分布和二项分布之间的关系后,对于接下来的Dirichlet 分布和多项分布(Multinomial distribution)的关系理解将会有非常大的帮助。多项分布,从字面上所表现出的含义,我们也大抵知道它的意思。它本身确实也是这样的,其单次试验中的随机变量的取值不再是0-1的,而是有多种离散值可能(1,2,3...,k),其中\sum_{i=1}^k{p_i}=1,p_i>0 。多项分布的概率密度函数为P(x_1,x_2,...,x_k;n,p_1,p_2,...,p_k)=\frac{n!}{x_1!\cdot\cdot\cdot x_k!}p_1^{x_1}\cdot\cdot\cdot p_k^{x_k}。而Dirichlet分布的的密度函数形式也如出一辙:f(x_1,x_2,...,x_k;\alpha_1,\alpha_2,...,\alpha_k)=\frac{1}{B(\alpha)}\prod_{i=1}^k{x_i^{\alpha^i-1}},其中B(\alpha)=\frac{\prod_{i=1}^k\Gamma(\alpha^i)}{\Gamma(\sum_{i=1}^k{\alpha^i})},\sum{x_i}=1。到这里,我们可以看到Beta分布和Dirichlet 分布有多相似啊,二项分布和多项分布有多相似啊!

再一次来看看共轭。假设x=(x_1,x_2,...,x_k)有先验分布

p(x;\alpha_1,\alpha_2,...,\alpha_k)=\frac{1}{B(\alpha)}\prod_{i=1}^k{x_i^{\alpha^i-1}}

另有似然函数

p(y|x)=\frac{n!}{n_1!\cdot\cdot\cdot n_k!}x_1^{n_1}\cdot\cdot\cdot x_k^{n_k},

则后验概率

p(x|y)=\frac{1}{Z}\prod_{i=1}^k{x_i^{\alpha^i+n_i-1}}

,和Dirichlet 分布形式一致。

其实,细心的读者已经发现,这里这四类分布,如果但从数学形式上看,它们的组织形式都是一致的,都是通过乘积的形式构成,加上先验分布、似然函数和后言分布之间的乘积推导关系,可以很容易发现,它们所表现出的共轭性质很容易理解。

关于Beta分布、二项分布与Dirichlet分布、多项分布的关系的更多相关文章

  1. 伯努利分布、二项分布、Beta分布、多项分布和Dirichlet分布与他们之间的关系,以及在LDA中的应用

    在看LDA的时候,遇到的数学公式分布有些多,因此在这里总结一下思路. 一.伯努利试验.伯努利过程与伯努利分布 先说一下什么是伯努利试验: 维基百科伯努利试验中: 伯努利试验(Bernoulli tri ...

  2. 机器学习的数学基础(1)--Dirichlet分布

    机器学习的数学基础(1)--Dirichlet分布 这一系列(机器学习的数学基础)主要包括目前学习过程中回过头复习的基础数学知识的总结. 基础知识:conjugate priors共轭先验 共轭先验是 ...

  3. (转)机器学习的数学基础(1)--Dirichlet分布

    转http://blog.csdn.net/jwh_bupt/article/details/8841644 这一系列(机器学习的数学基础)主要包括目前学习过程中回过头复习的基础数学知识的总结. 基础 ...

  4. Dirichlet分布深入理解

    Dirichlet分布 我们把Beta分布推广到高维的场景,就是Dirichlet分布.Dirichlet分布定义如下 Dirichlet分布与多项式分布共轭.多项式分布定义如下 共轭关系表示如下 D ...

  5. 伯努利分布、二项分布、多项分布、Beta分布、Dirichlet分布

    1. 伯努利分布 伯努利分布(Bernoulli distribution)又名两点分布或0-1分布,介绍伯努利分布前首先需要引入伯努利试验(Bernoulli trial). 伯努利试验是只有两种可 ...

  6. LDA-math-认识Beta/Dirichlet分布

    http://cos.name/2013/01/lda-math-beta-dirichlet/#more-6953 2. 认识Beta/Dirichlet分布2.1 魔鬼的游戏—认识Beta 分布 ...

  7. LDA学习之beta分布和Dirichlet分布

    ---恢复内容开始--- 今天学习LDA主题模型,看到Beta分布和Dirichlet分布一脸的茫然,这俩玩意怎么来的,再网上查阅了很多资料,当做读书笔记记下来: 先来几个名词: 共轭先验: 在贝叶斯 ...

  8. (转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布

    1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3.  4.  ...

  9. Beta分布和Dirichlet分布

    在<Gamma函数是如何被发现的?>里证明了\begin{align*} B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \text{d} x = \frac ...

随机推荐

  1. JS 弹出模态窗口解决方案

    最近在项目中使用弹出模态窗口,功能要求: (1)模态窗口选择项目 (2)支持选择返回事件处理 在IE中有showModalDialog 方法,可以很好的解决该问题,但是在Chrome中和FF中就有问题 ...

  2. UIView常见属性总结

    一 UIVIew 常见属性 .frame 位置和尺寸(以父控件的左上角为原点(,)) .center 中点 (以父控件的左上角为原点(,)) .bounds 位置和尺寸(以自己的左上角为原点 (,)) ...

  3. Node.js 手册查询-1-核心模块方法

    Node.js 学习手册 标签(空格分隔): node.js 模块 核心模块 核心模块是被编译成二进制代码,引用的时候只需require表示符即可 os 系统基本信息 os模块可提供操作系统的一些基本 ...

  4. 3ds Max Shortcuts 快捷键大全

    主界面 [Q]选择循环改变方式 [W]移动 [E]旋转 [R]缩放循环改变方式 [7]物体面数 [8]Environment [9]Advanced lighting [0]Render to Tex ...

  5. django1.9 创建数据表

    1.在setting.py 中注册app: 2.编写models.py 文件创建表结构: (生成的表默认是: app名称_定义的表面  ) 3.执行命令: python manage.py check ...

  6. JAVA中保留指定小数位方法

    import java.math.BigDecimal;    import java.text.DecimalFormat;    import java.text.NumberFormat;    ...

  7. ArcEngine:空间索引格网大小无效

    参考如下帖子:http://www.cnblogs.com/linhugh/archive/2012/07/24/2606439.html\ C# 代码如下 IFeatureClass pNewFtC ...

  8. 调试WEB APP多设备浏览器

    方法:adobe shadow  \ opera远程调试\ weinre adobe shadow: 我们经常使用Firefox的firebug或者Chrome的开发人员工具进行Web调试页面,Jav ...

  9. CloudSim样例分析

    自带八个样例描述: cloudsim-2.1.1\examples目录下提供了一些CloudSim样例程序,每个样例模拟的环境如下: (1)CloudSimExample1.Java:创建一个一台主机 ...

  10. 导出excel时,以form方式提交json数据

    今天在写项目时写到一个excel的导出,开始想用ajax请求后台后导出,但发现ajax会有返回值,而且ajax无法直接输出文件,而后台的excel导出方法已经封装好,不方便修改. 就改用了提交的方式f ...