关于Beta分布、二项分布与Dirichlet分布、多项分布的关系
在机器学习领域中,概率模型是一个常用的利器。用它来对问题进行建模,有几点好处:1)当给定参数分布的假设空间后,可以通过很严格的数学推导,得到模型的似然分布,这样模型可以有很好的概率解释;2)可以利用现有的EM算法或者Variational method来学习。通常为了方便推导参数的后验分布,会假设参数的先验分布是似然的某个共轭分布,这样后验分布和先验分布具有相同的形式,这对于建模过程中的数学推导可以大大的简化,保证最后的形式是tractable。
在概率模型中,Dirichlet这个词出现的频率非常的高。初始机器学习的同学或者说得再广一些,在学习概率模型的时候,很多同学都不清楚为啥一个表现形式如此奇怪的分布Dirichlet分布会出现在我们的教科书中,它是靠啥关系攀上了多项分布(Multinomial distribution)这个亲戚的,以至于它可以“堂而皇之”地扼杀我大天朝这么多数学家和科学家梦想的?为了引出背后这层关系,我们需要先介绍一个概念——共轭先验(Conjugate Prior)。
- Conjugate Prior: In Bayesian probability theory, if the posterior distributions p(θ|x) are in the same family as the prior probability distribution p(θ), the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood. ----from wiki
- 用中文来讲,在贝叶斯统计理论中,如果某个随机变量Θ的后验概率 p(θ|x)和气先验概率p(θ)属于同一个分布簇的,那么称p(θ|x)和p(θ)为共轭分布,同时,也称p(θ)为似然函数p(x|θ)的共轭先验。
介绍了这个重要的概念之后,我们回到文章的正题。首先需要弄清楚什么是二项分布(Binomial distribution)。这个概念是从伯努利分布推进的。伯努利分布是一个离散型的随机分布,其中的随机变量只有两类取值,非正即负{+,-}。二项分布即重复n次的伯努利试验,记为 X~b(n,p)。概率密度函数(概率质量函数)为P(K=k)=\binom{n}{k}p^k(1-p)^{n-k}。再来看看Beta分布,给定参数\alpha>0和\beta>0,取值范围为[0,1]的随机变量x的概率密度函数f(x;\alpha,\beta)=\frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1},其中\frac{1}{B(\alpha,\beta)}=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)},\Gamma(z)=\int_0^{\infty}t^{z-1}e^{-t}dt。这里假定,先验分布和似然概率如下所示:
那么很容易知道后验概率为
弄清楚了Beta分布和二项分布之间的关系后,对于接下来的Dirichlet 分布和多项分布(Multinomial distribution)的关系理解将会有非常大的帮助。多项分布,从字面上所表现出的含义,我们也大抵知道它的意思。它本身确实也是这样的,其单次试验中的随机变量的取值不再是0-1的,而是有多种离散值可能(1,2,3...,k),其中\sum_{i=1}^k{p_i}=1,p_i>0 。多项分布的概率密度函数为P(x_1,x_2,...,x_k;n,p_1,p_2,...,p_k)=\frac{n!}{x_1!\cdot\cdot\cdot x_k!}p_1^{x_1}\cdot\cdot\cdot p_k^{x_k}。而Dirichlet分布的的密度函数形式也如出一辙:f(x_1,x_2,...,x_k;\alpha_1,\alpha_2,...,\alpha_k)=\frac{1}{B(\alpha)}\prod_{i=1}^k{x_i^{\alpha^i-1}},其中B(\alpha)=\frac{\prod_{i=1}^k\Gamma(\alpha^i)}{\Gamma(\sum_{i=1}^k{\alpha^i})},\sum{x_i}=1。到这里,我们可以看到Beta分布和Dirichlet 分布有多相似啊,二项分布和多项分布有多相似啊!
再一次来看看共轭。假设x=(x_1,x_2,...,x_k)有先验分布
,
另有似然函数
则后验概率
,和Dirichlet 分布形式一致。
其实,细心的读者已经发现,这里这四类分布,如果但从数学形式上看,它们的组织形式都是一致的,都是通过乘积的形式构成,加上先验分布、似然函数和后言分布之间的乘积推导关系,可以很容易发现,它们所表现出的共轭性质很容易理解。
关于Beta分布、二项分布与Dirichlet分布、多项分布的关系的更多相关文章
- 伯努利分布、二项分布、Beta分布、多项分布和Dirichlet分布与他们之间的关系,以及在LDA中的应用
在看LDA的时候,遇到的数学公式分布有些多,因此在这里总结一下思路. 一.伯努利试验.伯努利过程与伯努利分布 先说一下什么是伯努利试验: 维基百科伯努利试验中: 伯努利试验(Bernoulli tri ...
- 机器学习的数学基础(1)--Dirichlet分布
机器学习的数学基础(1)--Dirichlet分布 这一系列(机器学习的数学基础)主要包括目前学习过程中回过头复习的基础数学知识的总结. 基础知识:conjugate priors共轭先验 共轭先验是 ...
- (转)机器学习的数学基础(1)--Dirichlet分布
转http://blog.csdn.net/jwh_bupt/article/details/8841644 这一系列(机器学习的数学基础)主要包括目前学习过程中回过头复习的基础数学知识的总结. 基础 ...
- Dirichlet分布深入理解
Dirichlet分布 我们把Beta分布推广到高维的场景,就是Dirichlet分布.Dirichlet分布定义如下 Dirichlet分布与多项式分布共轭.多项式分布定义如下 共轭关系表示如下 D ...
- 伯努利分布、二项分布、多项分布、Beta分布、Dirichlet分布
1. 伯努利分布 伯努利分布(Bernoulli distribution)又名两点分布或0-1分布,介绍伯努利分布前首先需要引入伯努利试验(Bernoulli trial). 伯努利试验是只有两种可 ...
- LDA-math-认识Beta/Dirichlet分布
http://cos.name/2013/01/lda-math-beta-dirichlet/#more-6953 2. 认识Beta/Dirichlet分布2.1 魔鬼的游戏—认识Beta 分布 ...
- LDA学习之beta分布和Dirichlet分布
---恢复内容开始--- 今天学习LDA主题模型,看到Beta分布和Dirichlet分布一脸的茫然,这俩玩意怎么来的,再网上查阅了很多资料,当做读书笔记记下来: 先来几个名词: 共轭先验: 在贝叶斯 ...
- (转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布
1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3. 4. ...
- Beta分布和Dirichlet分布
在<Gamma函数是如何被发现的?>里证明了\begin{align*} B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \text{d} x = \frac ...
随机推荐
- JAVA_DES 加密 解密 生成随机密钥
package com.test; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.In ...
- C# async
I/O should use async, asynchronous method can be achieved: message, delegate, multi-threading Thread ...
- 自己做的一个小demo
上图: 主段代码: <script type="text/javascript"> var getRandomColor = function(){ return (f ...
- django1.9 创建数据表
1.在setting.py 中注册app: 2.编写models.py 文件创建表结构: (生成的表默认是: app名称_定义的表面 ) 3.执行命令: python manage.py check ...
- C# @符号的作用, 可定义关键字为变量名
一 字符串中的用法字符@表示,其后的字符串是个“逐字字符串”(verbatim string).@只能对字符串常量作用.1.用于文件路径以下是引用片段:string s_FilePath =" ...
- Linux下JDK安装笔记
环境说明: Linux版本: CentOS6.2 JDK:jdk-7u60-linux-x64.tar.gz 1.下载jdk-7u60-linux-x64.tar.gz,本人是放到了~/工具 目录 ...
- bootstrap-combined.min.css
/*! * Bootstrap v2.2.2 * * Copyright 2012 Twitter, Inc * Licensed under the Apache License v2.0 * ht ...
- Cocos2d-x 开发 v3.2 建立新项目并添加库文件
一.添加其它类库 3.0以上的设计耦合性强,项目中模块常以库的形式存在,需常添加链接库.在3.0中经常用到CocoStudio 编辑器的资源数据,所以需要添加CocoStudio 库. 1.1 ...
- WordPress插件入口菜单创建的位置代码
Add_management_page() 在Tools下面创建 Add_options_page() 在Settings下面创建 Add_theme_page() 在Appearance下面创建 A ...
- IOS第15天(2,事件处理hitTest练习)
***hitTest 获取最合适的点 @implementation HMGreenView - (void)touchesBegan:(NSSet *)touches withEvent:(UIEv ...