leetcode 315. Count of Smaller Numbers After Self 两种思路(欢迎探讨更优解法)
说来惭愧,已经四个月没有切 leetcode 上的题目了。
虽然工作中很少(几乎)没有用到什么高级算法,数据结构,但是我一直坚信 "任何语言都会过时,只有数据结构和算法才能永恒"。leetcode 上的题目,截止目前切了 137 道(all solutions),只写过 6 篇题解,所以我会写题解的一般都是自认为还蛮有意思或者蛮典型的题目,就比如这道题。
题目链接:Count of Smaller Numbers After Self
这道题很有意思,给出一个数组,返回一个新的数组,新数组每个元素表示原数组中对应位置右边比该元素小的元素个数。听不懂了吧?举个栗子:
数组 nums = [5, 2, 6, 1]
5 右边有 2 个元素比 5 小(2 和 1)
2 右边有 1 个元素比 2 小 (1)
6 右边有 1 个元素比 6 小(1)
1 右边有 0 个元素比 1 小
所以返回数组 [2, 1, 1, 0]
leetcode 有一点不大好,就是不给数据大小范围,所以我相信绝大多数人会和我一样,先写个两层循环的 O(n^2) 代码,一提交,超时了,它给出超时数据,数组长度 20000+,O(n^2) 复杂度都好几亿了!
来分析下这道题,需要求右边比该数小的数的个数,所以有一点很明确,我们需要从右往左遍历数组。还是以上面的数组举例,也就是说当我们遍历到 index=0 时,需要知道现在已经有 1, 2, 6 三个数据了,我们需要一种数据结构,能保存 1, 2, 6, 同时之后能把 5 插进去。
首先映入脑海的是树状数组(直接把此题搞复杂了)。(不了解树状数组的可以参考我之前的文章 【前端也要学点数据结构】 神奇的树状数组 以及 【前端也要学点数据结构】神奇的树状数组的三大应用)
和改点求段很像,求右边比之小的数量,是为 "求段",求完后把该点插进入,是为 "改点"。但是我们还需要改变传统树状数组求解的思路,把数组元素大小当做下标,而不是元素的索引位置,比如说 A[1] 其实是表示 1 的数量,而 C[2] 其实是表示 1 和 2 的数量和,所以 "改点" 的时候增量都是 1,有种 "大材小用" 之感。更蛋疼的是,由于不知道数据大小,还需要进行离散化。
目标是将 [5, 2, 6, 1] 转换成 [3, 2, 4, 1] 这样,然后再用树状数组求解。
离散化,需要先排序,再离散,最后再排回来:
var arr = []
, len = nums.length;
// array to object
// 增加 index 属性,以便离散化
for (var i = 0; i < len; i++) {
var tmp = {};
tmp.index = i;
tmp.value = nums[i];
arr.push(tmp);
}
arr.sort(function(a, b) {
return a.value - b.value;
});
// 离散化
var maxn = 1;
for (var i = 0; i < len; i++) {
if (!i) {
arr[i].nValue = maxn;
} else {
arr[i].nValue = arr[i].value === arr[i - 1].value ? maxn : ++maxn;
}
}
arr.sort(function(a, b) {
return a.index - b.index;
});
树状数组求解:
// 树状数组
var ans = []
, sum = [];
for (var i = 0; i <= maxn; i++)
sum[i] = 0;
function lowbit(x) { return x & (-x); }
function update(index, val) {
for (var i = index; i <= maxn; i += lowbit(i))
sum[i] += val;
}
function getSum(index) {
var ans = 0;
for (var i = index; i; i -= lowbit(i))
ans += sum[i];
return ans;
}
for (var i = len - 1; i >= 0; i--) {
var nValue = arr[i].nValue;
ans.unshift(getSum(nValue - 1));
update(nValue, 1);
}
树状数组部分就是简单的更新和查询了。完整代码可以参考 树状数组解法。
虽然 Accept 了,但是耗时 300ms+,仅击败了 35% 的 Javascript solutions,一看最佳答案在 200ms 左右,开始怀疑是不是有 O(n) 的解法,但是思忖良久也没有想到,想想是不是 4 次的 nlogn 耗时巨大(离散两次 sort,树状数组查询和更新各一次)。
还是拿 [5, 2, 6, 1] 举例,当枚举到 5 时,要求 [1, 2, 6] 中小于 5 的数量,同时之后又可以把 5 插进入,维护一个二叉检索树(BST)似乎是可行的?不不不,这不是赤裸裸的二分查找吗!!!
二分查找 [1, 2, 6] 中小于 5 的个数,查完之后把 5 塞进数组,维护数组的单调性,而且 Javascript 正好有 splice() 方法可以把一个数字插入数组。
二分部分返回小于 target 的数量,同时也是插入 target 的位置(index):
// binary search
function bSearch(target, a) {
var start = 0
, end = a.length - 1;
while(start <= end) {
var mid = ~~((start + end) >> 1);
if (a[mid] >= target)
end = mid - 1;
else if (a[mid] < target)
start = mid + 1;
}
return start;
}
完整代码可以参考 二分查找解法
但是遗憾的是,尽管从 4 次 nlogn 下降到了 1 次 nlongn,但是耗时不降反升了,究其原因,我觉得是 unshift() 方法和 splice() 方法的大量调用,你觉得呢?
个人暂时没有想出 O(n) 的线性解法(可能就是没有),但是实实在在有 200ms 的 Javascript solution,难道是 BST 么?欢迎有想法的同学跟我交流探讨。
leetcode 315. Count of Smaller Numbers After Self 两种思路(欢迎探讨更优解法)的更多相关文章
- leetcode 315. Count of Smaller Numbers After Self 两种思路
说来惭愧,已经四个月没有切 leetcode 上的题目了. 虽然工作中很少(几乎)没有用到什么高级算法,数据结构,但是我一直坚信 "任何语言都会过时,只有数据结构和算法才能永恒". ...
- [LeetCode] 315. Count of Smaller Numbers After Self (Hard)
315. Count of Smaller Numbers After Self class Solution { public: vector<int> countSmaller(vec ...
- [LeetCode] 315. Count of Smaller Numbers After Self 计算后面较小数字的个数
You are given an integer array nums and you have to return a new counts array. The countsarray has t ...
- LeetCode 315. Count of Smaller Numbers After Self
原题链接在这里:https://leetcode.com/problems/count-of-smaller-numbers-after-self/ 题目: You are given an inte ...
- 第十四周 Leetcode 315. Count of Smaller Numbers After Self(HARD) 主席树
Leetcode315 题意很简单,给定一个序列,求每一个数的右边有多少小于它的数. O(n^2)的算法是显而易见的. 用普通的线段树可以优化到O(nlogn) 我们可以直接套用主席树的模板. 主席树 ...
- 315.Count of Smaller Numbers After Self My Submissions Question
You are given an integer array nums and you have to return a new counts array. Thecounts array has t ...
- 315. Count of Smaller Numbers After Self
You are given an integer array nums and you have to return a new counts array. The counts array has ...
- 315. Count of Smaller Numbers After Self(Fenwick Tree)
You are given an integer array nums and you have to return a new counts array. The counts array has ...
- 315 Count of Smaller Numbers After Self 计算右侧小于当前元素的个数
给定一个整型数组 nums,按要求返回一个新的 counts 数组.数组 counts 有该性质: counts[i] 的值是 nums[i] 右侧小于nums[i] 的元素的数量.例子:给定 nu ...
随机推荐
- [CMD]oracle数据库的导出导入
除了推荐使用PL/SQL Developer 工具对oracle进行导出导入(http://www.cnblogs.com/whylaughing/p/5983490.html )之外,比较常用的还有 ...
- mysql-4 数据检索(2)
用通配符进行过滤 like操作符 %通配符 %可以匹配任意字符 SELECT prod_id , prod_name FROM products WHERE prod_name LIKE 'je ...
- 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据操作(二)
CSSDesk body { background-color: #2574b0; } /*! zybuluo */ article,aside,details,figcaption,figure,f ...
- strlen和sizeof的区别
1.sizeof操作符的结果类型是size_t,它在头文件中typedef为unsigned int类型.该类型保证能容纳实现所建立的最大对象的字节大小. 2.sizeof是算符,strlen是函 ...
- 使用 python 发送邮件
1.使用python 写发邮箱代码: def sendmail (): import smtplib from email.mime.text import MIMEText from email.u ...
- windows下制作linux U盘启动盘或者安装优盘(转)
windows下制作linux U盘启动盘或者安装优盘(转) Linux发行版排行榜:http://iso.linuxquestions.org/ [方案一]:UltraISO(不推荐,在Window ...
- HTTP 请求报文 响应报文
引言 超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议.所有的WWW文件都必须遵守这个标准.设计HTTP最初的目的是为了提供一种发 ...
- linux GD库安装
GD 安裝第一部需要做的是先要安裝 GD 到系統內,而安裝 GD 前需要安裝 jpeg-6b, libpng, zlib, freetype.以下是下载网址:GD 2.0.33jpeg-6blibpn ...
- linux监控命令nc用法
一.nc命令检测端口的用法 # nc -v -w 10 %IP% -z %PORT% -v 显示指令执行过程. -w <超时秒数> 设置等待连线的时间. -u 表示使用UDP协议 -z 使 ...
- 学习OpenStack之 (2):Cinder LVM 配置
0.背景 OpenStack 中的实例是不能持久化的,cinder服务重启,实例消失.如果需要挂载 volume,需要在 volume 中实现持久化.Cinder提供持久的块存储,目前仅供给虚拟机挂载 ...