Python中的pandas模块进行数据分析。

接下来pandas介绍中将学习到如下8块内容:
1、数据结构简介:DataFrame和Series
2、数据索引index
3、利用pandas查询数据
4、利用pandas的DataFrames进行统计分析
5、利用pandas实现SQL操作
6、利用pandas进行缺失值的处理
7、利用pandas实现Excel的数据透视表功能
8、多层索引的使用

一、数据结构介绍

在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame。Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其可通过索引标签的方式获取数据,还具有索引的自动对齐功能;DataFrame类似于numpy中的二维数组,同样可以通用numpy数组的函数和方法,而且还具有其他灵活应用,后续会介绍到。

1、Series的创建

序列的创建主要有三种方式:

1)通过一维数组创建序列
  1. import numpy as np, pandas as pd
  2. arr1 = np.arange(10)
  3. arr1
  4. type(arr1)
  5. s1 = pd.Series(arr1)
  6. s1
  7. type(s1)
2)通过字典的方式创建序列
  1. dic1 = {'a':10,'b':20,'c':30,'d':40,'e':50}
  2. dic1
  3. type(dic1)
  4. s2 = pd.Series(dic1)
  5. s2
  6. type(s2)
3)通过DataFrame中的某一行或某一列创建序列

这部分内容我们放在后面讲,因为下面就开始将DataFrame的创建。

2、DataFrame的创建

数据框的创建主要有三种方式:

1)通过二维数组创建数据框
  1. arr2 = np.array(np.arange(12)).reshape(4,3)
  2. arr2
  3. type(arr2)
  4. df1 = pd.DataFrame(arr2)
  5. df1
  6. type(df1)
2)通过字典的方式创建数据框

以下以两种字典来创建数据框,一个是字典列表,一个是嵌套字典。

  1. dic2 = {'a':[1,2,3,4],'b':[5,6,7,8],
  2. 'c':[9,10,11,12],'d':[13,14,15,16]}
  3. dic2
  4. type(dic2)
  5. df2 = pd.DataFrame(dic2)
  6. df2
  7. type(df2)
  8. dic3 = {'one':{'a':1,'b':2,'c':3,'d':4},
  9. 'two':{'a':5,'b':6,'c':7,'d':8},
  10. 'three':{'a':9,'b':10,'c':11,'d':12}}
  11. dic3
  12. type(dic3)
  13. df3 = pd.DataFrame(dic3)
  14. df3
  15. type(df3)
3)通过数据框的方式创建数据框
  1. df4 = df3[['one','three']]
  2. df4
  3. type(df4)
  4. s3 = df3['one']
  5. s3
  6. type(s3)

二、数据索引index

细致的朋友可能会发现一个现象,不论是序列也好,还是数据框也好,对象的最左边总有一个非原始数据对象,这个是什么呢?不错,就是我们接下来要介绍的索引。
在我看来,序列或数据框的索引有两大用处,一个是通过索引值或索引标签获取目标数据,另一个是通过索引,可以使序列或数据框的计算、操作实现自动化对齐,下面我们就来看看这两个功能的应用。

1、通过索引值或索引标签获取数据

  1. s4 = pd.Series(np.array([1,1,2,3,5,8]))
  2. s4

如果不给序列一个指定的索引值,则序列自动生成一个从0开始的自增索引。可以通过index查看序列的索引:

  1. s4.index

现在我们为序列设定一个自定义的索引值:

  1. s4.index = ['a','b','c','d','e','f']
  2. s4

序列有了索引,就可以通过索引值或索引标签进行数据的获取:

  1. s4[3]
  2. s4['e']
  3. s4[[1,3,5]]
  4. s4[['a','b','d','f']]
  5. s4[:4]
  6. s4['c':]
  7. s4['b':'e']

千万注意:如果通过索引标签获取数据的话,末端标签所对应的值是可以返回的!在一维数组中,就无法通过索引标签获取数据,这也是序列不同于一维数组的一个方面。

2、自动化对齐

如果有两个序列,需要对这两个序列进行算术运算,这时索引的存在就体现的它的价值了—自动化对齐.

  1. s5 = pd.Series(np.array([10,15,20,30,55,80]),
  2. index = ['a','b','c','d','e','f'])
  3. s5
  4. s6 = pd.Series(np.array([12,11,13,15,14,16]),
  5. index = ['a','c','g','b','d','f'])
  6. s6
  7. s5 + s6
  8. s5/s6

由于s5中没有对应的g索引,s6中没有对应的e索引,所以数据的运算会产生两个缺失值NaN。注意,这里的算术结果就实现了两个序列索引的自动对齐,而非简单的将两个序列加总或相除。对于数据框的对齐,不仅仅是行索引的自动对齐,同时也会自动对齐列索引(变量名)

数据框中同样有索引,而且数据框是二维数组的推广,所以其不仅有行索引,而且还存在列索引,关于数据框中的索引相比于序列的应用要强大的多,这部分内容将放在数据查询中讲解。

三、利用pandas查询数据

这里的查询数据相当于R语言里的subset功能,可以通过布尔索引有针对的选取原数据的子集、指定行、指定列等。我们先导入一个student数据集:

  1. student = pd.io.parsers.read_csv('C:\\Users\\admin\\Desktop\\student.csv')

查询数据的前5行或末尾5行

  1. student.head()
  2. student.tail()

查询指定的行

  1. student.ix[[0,2,4,5,7]] #这里的ix索引标签函数必须是中括号[]

查询指定的列

  1. student[['Name','Height','Weight']].head() #如果多个列的话,必须使用双重中括号

也可以通过ix索引标签查询指定的列

  1. student.ix[:,['Name','Height','Weight']].head()

查询指定的行和列

  1. student.ix[[0,2,4,5,7],['Name','Height','Weight']].head()

以上是从行或列的角度查询数据的子集,现在我们来看看如何通过布尔索引实现数据的子集查询。
查询所有女生的信息

  1. student[student['Sex']=='F']

查询出所有12岁以上的女生信息

  1. student[(student['Sex']=='F') & (student['Age']>12)]

查询出所有12岁以上的女生姓名、身高和体重

  1. student[(student['Sex']=='F') & (student['Age']>12)][['Name','Height','Weight']]

上面的查询逻辑其实非常的简单,需要注意的是,如果是多个条件的查询,必须在&(且)或者|(或)的两端条件用括号括起来。

四、统计分析

pandas模块为我们提供了非常多的描述性统计分析的指标函数,如总和、均值、最小值、最大值等,我们来具体看看这些函数:
首先随机生成三组数据

  1. np.random.seed(1234)
  2. d1 = pd.Series(2*np.random.normal(size = 100)+3)
  3. d2 = np.random.f(2,4,size = 100)
  4. d3 = np.random.randint(1,100,size = 100)
  5. d1.count() #非空元素计算
  6. d1.min() #最小值
  7. d1.max() #最大值
  8. d1.idxmin() #最小值的位置,类似于R中的which.min函数
  9. d1.idxmax() #最大值的位置,类似于R中的which.max函数
  10. d1.quantile(0.1) #10%分位数
  11. d1.sum() #求和
  12. d1.mean() #均值
  13. d1.median() #中位数
  14. d1.mode() #众数
  15. d1.var() #方差
  16. d1.std() #标准差
  17. d1.mad() #平均绝对偏差
  18. d1.skew() #偏度
  19. d1.kurt() #峰度
  20. d1.describe() #一次性输出多个描述性统计指标

必须注意的是,descirbe方法只能针对序列或数据框,一维数组是没有这个方法的

这里自定义一个函数,将这些统计描述指标全部汇总到一起:

  1. def stats(x):
  2. return pd.Series([x.count(),x.min(),x.idxmin(),
  3. x.quantile(.25),x.median(),
  4. x.quantile(.75),x.mean(),
  5. x.max(),x.idxmax(),
  6. x.mad(),x.var(),
  7. x.std(),x.skew(),x.kurt()],
  8. index = ['Count','Min','Whicn_Min',
  9. 'Q1','Median','Q3','Mean',
  10. 'Max','Which_Max','Mad',
  11. 'Var','Std','Skew','Kurt'])
  12. stats(d1)

在实际的工作中,我们可能需要处理的是一系列的数值型数据框,如何将这个函数应用到数据框中的每一列呢?可以使用apply函数,这个非常类似于R中的apply的应用方法。
将之前创建的d1,d2,d3数据构建数据框:

  1. df = pd.DataFrame(np.array([d1,d2,d3]).T,columns=['x1','x2','x3'])
  2. df.head()
  3. df.apply(stats)

非常完美,就这样很简单的创建了数值型数据的统计性描述。如果是离散型数据呢?就不能用这个统计口径了,我们需要统计离散变量的观测数、唯一值个数、众数水平及个数。你只需要使用describe方法就可以实现这样的统计了。

  1. student['Sex'].describe()

除以上的简单描述性统计之外,还提供了连续变量的相关系数(corr)和协方差矩阵(cov)的求解,这个跟R语言是一致的用法。

  1. df.corr()

关于相关系数的计算可以调用pearson方法或kendell方法或spearman方法,默认使用pearson方法。

  1. df.corr('spearman')

如果只想关注某一个变量与其余变量的相关系数的话,可以使用corrwith,如下方只关心x1与其余变量的相关系数:

  1. df.corrwith(df['x1'])

数值型变量间的协方差矩阵

  1. df.cov()

    五、类似于SQL的操作

    在SQL中常见的操作主要是增、删、改、查几个动作,那么pandas能否实现对数据的这几项操作呢?答案是Of Course!

    增:添加新行或增加新列
    1. In [99]: dic = {'Name':['LiuShunxiang','Zhangshan'],
    2. ...: 'Sex':['M','F'],'Age':[27,23],
    3. ...: 'Height':[165.7,167.2],'Weight':[61,63]}
    4. In [100]: student2 = pd.DataFrame(dic)
    5. In [101]: student2
    6. Out[101]:
    7. Age Height Name Sex Weight
    8. 0 27 165.7 LiuShunxiang M 61
    9. 1 23 167.2 Zhangshan F 63

    现在将student2中的数据新增到student中,可以通过concat函数实现:

    注意到了吗?在数据库中union必须要求两张表的列顺序一致,而这里concat函数可以自动对齐两个数据框的变量!

    新增列的话,其实在pandas中就更简单了,例如在student2中新增一列学生成绩:

    对于新增的列没有赋值,就会出现空NaN的形式。

    删:删除表、观测行或变量列

    删除数据框student2,通过del命令实现,该命令可以删除Python的所有对象。

    删除指定的行

    原数据中的第1,2,4,7行的数据已经被删除了。
    根据布尔索引删除行数据,其实这个删除就是保留删除条件的反面数据,例如删除所有14岁以下的学生:

    删除指定的列

    我们发现,不论是删除行还是删除列,都可以通过drop方法实现,只需要设定好删除的轴即可,即调整drop方法中的axis参数。默认该参数为0,表示删除行观测,如果需要删除列变量,则需设置为1。

    改:修改原始记录的值

    如果发现表中的某些数据错误了,如何更改原来的值呢?我们试试结合布尔索引和赋值的方法:
    例如发现student3中姓名为Liushunxiang的学生身高错了,应该是173,如何改呢?

    这样就可以把原来的身高修改为现在的170了。
    看,关于索引的操作非常灵活、方便吧,就这样轻松搞定数据的更改。

    查:有关数据查询部分,上面已经介绍过,下面重点讲讲聚合、排序和多表连接操作。
    聚合:pandas模块中可以通过groupby()函数实现数据的聚合操作

    根据性别分组,计算各组别中学生身高和体重的平均值:

    如果不对原始数据作限制的话,聚合函数会自动选择数值型数据进行聚合计算。如果不想对年龄计算平均值的话,就需要剔除改变量:

    groupby还可以使用多个分组变量,例如根本年龄和性别分组,计算身高与体重的平均值:

    当然,还可以对每个分组计算多个统计量:

    是不是很简单,只需一句就能完成SQL中的SELECT…FROM…GROUP BY…功能,何乐而不为呢?

    排序:

    排序在日常的统计分析中还是比较常见的操作,我们可以使用order、sort_index和sort_values实现序列和数据框的排序工作:

    我们再试试降序排序的设置:

    上面两个结果其实都是按值排序,并且结果中都给出了警告信息,即建议使用sort_values()函数进行按值排序。

    在数据框中一般都是按值排序,例如:

    多表连接:

    多表之间的连接也是非常常见的数据库操作,连接分内连接和外连接,在数据库语言中通过join关键字实现,pandas我比较建议使用merger函数实现数据的各种连接操作。
    如下是构造一张学生的成绩表:

    现在想把学生表student与学生成绩表score做一个关联,该如何操作呢?

    注意,默认情况下,merge函数实现的是两个表之间的内连接,即返回两张表中共同部分的数据。可以通过how参数设置连接的方式,left为左连接;right为右连接;outer为外连接。

    左连接实现的是保留student表中的所有信息,同时将score表的信息与之配对,能配多少配多少,对于没有配对上的Name,将会显示成绩为NaN。

  2. 六、缺失值处理

    现实生活中的数据是非常杂乱的,其中缺失值也是非常常见的,对于缺失值的存在可能会影响到后期的数据分析或挖掘工作,那么我们该如何处理这些缺失值呢?常用的有三大类方法,即删除法、填补法和插值法。
    删除法:当数据中的某个变量大部分值都是缺失值,可以考虑删除改变量;当缺失值是随机分布的,且缺失的数量并不是很多是,也可以删除这些缺失的观测。
    替补法:对于连续型变量,如果变量的分布近似或就是正态分布的话,可以用均值替代那些缺失值;如果变量是有偏的,可以使用中位数来代替那些缺失值;对于离散型变量,我们一般用众数去替换那些存在缺失的观测。
    插补法:插补法是基于蒙特卡洛模拟法,结合线性模型、广义线性模型、决策树等方法计算出来的预测值替换缺失值。

    我们这里就介绍简单的删除法和替补法:

    这是一组含有缺失值的序列,我们可以结合sum函数和isnull函数来检测数据中含有多少缺失值:

    1. In [130]: sum(pd.isnull(s))
    2. Out[130]: 9

    直接删除缺失值

    默认情况下,dropna会删除任何含有缺失值的行,我们再构造一个数据框试试:

    返回结果表明,数据中只要含有缺失值NaN,该数据行就会被删除,如果使用参数how=’all’,则表明只删除所有行为缺失值的观测。

    使用一个常量来填补缺失值,可以使用fillna函数实现简单的填补工作:
    1)用0填补所有缺失值

    2)采用前项填充或后向填充

    3)使用常量填充不同的列

    4)用均值或中位数填充各自的列

    很显然,在使用填充法时,相对于常数填充或前项、后项填充,使用各列的众数、均值或中位数填充要更加合理一点,这也是工作中常用的一个快捷手段。

    七、数据透视表

    在Excel中有一个非常强大的功能就是数据透视表,通过托拉拽的方式可以迅速的查看数据的聚合情况,这里的聚合可以是计数、求和、均值、标准差等。
    pandas为我们提供了非常强大的函数pivot_table(),该函数就是实现数据透视表功能的。对于上面所说的一些聚合函数,可以通过参数aggfunc设定。我们先看看这个函数的语法和参数吧:

    1. pivot_table(data,values=None,
    2. index=None,
    3. columns=None,
    4. aggfunc='mean',
    5. fill_value=None,
    6. margins=False,
    7. dropna=True,
    8. margins_name='All')
    9. data:需要进行数据透视表操作的数据框
    10. values:指定需要聚合的字段
    11. index:指定某些原始变量作为行索引
    12. columns:指定哪些离散的分组变量
    13. aggfunc:指定相应的聚合函数
    14. fill_value:使用一个常数替代缺失值,默认不替换
    15. margins:是否进行行或列的汇总,默认不汇总
    16. dropna:默认所有观测为缺失的列
    17. margins_name:默认行汇总或列汇总的名称为'All'

    我们仍然以student表为例,来认识一下数据透视表pivot_table函数的用法:
    对一个分组变量(Sex),一个数值变量(Height)作统计汇总

    对一个分组变量(Sex),两个数值变量(Height,Weight)作统计汇总

    对两个分组变量(Sex,Age),两个数值变量(Height,Weight)作统计汇总

    很显然这样的结果并不像Excel中预期的那样,该如何变成列联表的形式的?很简单,只需将结果进行非堆叠操作(unstack)即可:

    看,这样的结果是不是比上面那种看起来更舒服一点?

    使用多个聚合函数

    有关更多数据透视表的操作,可参考《Pandas透视表(pivot_table)详解》一文,链接地址:http://python.jobbole.com/81212/

    八、多层索引的使用

    最后我们再来讲讲pandas中的一个重要功能,那就是多层索引。在序列中它可以实现在一个轴上拥有多个索引,就类似于Excel中常见的这种形式:

    对于这样的数据格式有什么好处呢?pandas可以帮我们实现用低维度形式处理高维数数据,这里举个例子也许你就能明白了:

    对于这种多层次索引的序列,取数据就显得非常简单了:

    对于这种多层次索引的序列,我们还可以非常方便的将其转换为数据框的形式:

    以上针对的是序列的多层次索引,数据框也同样有多层次的索引,而且每条轴上都可以有这样的索引,就类似于Excel中常见的这种形式:

    我们不妨构造一个类似的高维数据框:

    同样,数据框中的多层索引也可以非常便捷的取出大块数据:

    在数据框中使用多层索引,可以将整个数据集控制在二维表结构中,这对于数据重塑和基于分组的操作(如数据透视表的生成)比较有帮助。
    就拿student二维数据框为例,我们构造一个多层索引数据集:

    讲到这里,我们关于pandas模块的学习基本完成,其实在掌握了pandas这8个主要的应用方法就可以灵活的解决很多工作中的数据处理、统计分析等任务。有关更多的pandas介绍,可参考pandas官方文档:http://pandas.pydata.org/pandas-docs/version/0.17.0/whatsnew.html。                                                                                                                          ####感谢刘顺祥作者分享……Y(^_^)Y####

Python数据分析之pandas学习的更多相关文章

  1. 08:Python数据分析之pandas学习

    1.1 数据结构介绍 参考博客:http://www.cnblogs.com/nxld/p/6058591.html 1.pandas介绍 1. 在pandas中有两类非常重要的数据结构,即序列Ser ...

  2. Python数据分析之pandas学习(基础操作)

    一.pandas数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其 ...

  3. Python数据分析库pandas基本操作

    Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Pyt ...

  4. Python数据分析之pandas基本数据结构:Series、DataFrame

    1引言 本文总结Pandas中两种常用的数据类型: (1)Series是一种一维的带标签数组对象. (2)DataFrame,二维,Series容器 2 Series数组 2.1 Series数组构成 ...

  5. Python 数据分析:Pandas 缺省值的判断

    Python 数据分析:Pandas 缺省值的判断 背景 我们从数据库中取出数据存入 Pandas None 转换成 NaN 或 NaT.但是,我们将 Pandas 数据写入数据库时又需要转换成 No ...

  6. Python数据分析之pandas

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  7. python数据分析之pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]

    1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Se ...

  8. Python数据分析之Pandas操作大全

    从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设 ...

  9. (转)Python数据分析之numpy学习

    原文:https://www.cnblogs.com/nxld/p/6058572.html https://morvanzhou.github.io/tutorials/data-manipulat ...

随机推荐

  1. php课程---练习(发布新闻)

    做一个发布新闻的页面,实现发布新闻,查看新闻,修改新闻与删除等功能 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional/ ...

  2. struct大小

    对齐. #include <iostream> using namespace std; struct S1 { int a; char b; char c; }; struct S2 { ...

  3. web.xml配置error-page

    一. 通过错误码来配置error-page <error-page> <error-code>404</error-code> <location>/e ...

  4. c语言的输入输出函数

    参考文章: http://blog.sina.com.cn/s/blog_784f40b80100psg9.html C语言输入输出函数分为两类: 1.格式化输入输出函数 2.非格式化输入输出 --- ...

  5. [转]Android SHA1与Package获取方式

    转自高德地图LBS Android SHA1与Package获取方式 获取应用包名 打开Android 应用工程的 AndroidManifest.xml配置文件,package 属性所对应的内容为应 ...

  6. LeetCode Maximum Size Subarray Sum Equals k

    原题链接在这里:https://leetcode.com/problems/maximum-size-subarray-sum-equals-k/ 题目: Given an array nums an ...

  7. C# 控制台程序(命令行程序)设置字体颜色,窗口宽高,光标行数

    控制台程序(命令行程序)设置窗口宽度高度,如下代码: Console.WriteLine(Console.WindowHeight); Console.WriteLine(Console.Buffer ...

  8. 下载pdf_不同操作系统,无法正常下载(兼容性问题)

    [功能点]:下载pdf文件 [问题描述]:window上传附件,linux无法下载 [根本原因]:window中路径分割符为"\",linux中路径分割符为"/" ...

  9. mongodb配置

    Mongodb1. 安装2. CRUD3. 索引4. 副本及(replica sets)5. 分片(sharding) nosql 简单数据模型 元数据和应用数据分离 弱一致性 优势: 避免不必要的复 ...

  10. RDIFramework.NET ━ 9.14 数据库连接管理 ━ Web部分

    RDIFramework.NET ━ .NET快速信息化系统开发框架 9.14  数据库连接管理 -Web部分 我们经常可以看到很多软件直接把数据库连接字符串放在软件执行目录下的配置文件中,这种直接把 ...