意甲冠军:联系

方法:状压DP?

题解:这题事实上没啥好写的。不算非常难,推一推就能搞出来。

首先看到这个问题,对于被d整除这个条件,非常easy就想到是取余数为0,所以想到可能状态中刚開始含有取余数。

先说我的第一个想法。f[i][j]表示选取i个数且此时的mod为j,这种思想是第一下蹦出来的,当时想的就是在线来搞终于的答案。只是转瞬即发现,这TM不就是暴力吗魂淡!并没有什么卵用,于是開始想这个状态可不能够做什么优化。

显然第二维的j并不须要太大的优化。暂且先将其搁置一边。来考虑第一维的i怎么优化。

把滚动栏拉到最下方发现这个i的范围最大是10,也就是说hash的空间为2^10-1,能够从状态的角度往下走,假设这个i代表hash状态,能不能表示他的转移方程呢?

首先依照一般的想法,对于每一个i,可能从它的某一为1的位数变为零的状态转移过来,假设依照这个方向搞的话或许也能做出来,只是,我们更熟悉的操作是加上而并非从原状态减去某个位,所以思路又转向到逆向更新。

也就是说我们能够初步写出来dp方程

f[(i|(1<<(k−1)))][(j∗10+a[k])%d]+=f[i][j]

当中更新的时候要保证i&(1<<(k-1))==0

然后我们做的仅仅须要枚举i,枚举j,枚举k

嗯哼就是这样。然而这中途当然有非常多自己主动剪掉的部分。所以复杂度不是非常高。题目时间范围可承受。

可是并没有完,这时候你会发现如此的代码连第一个小例子都过不了,也就是说。假设有反复的数字的话,我们会算非常多反复的情况。而怎么去重呢?仅仅须要将答案除掉反复的数的个数的排列就好了。也就是阶乘!

后记:事实上写这个题解的目的就是将自己解一道题的全过程写出来。

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 15
#define M 1100
using namespace std;
int tot,mod,l;
int a[N];
int cnt[N];
char s[N];
int f[1<<10][M];
int A[]={0,1,2,6,24,120,720,5040,40320,362880,3628800};
void dfs()
{
for(int i=0;i<(1<<l);i++)
{
for(int k=0;k<mod;k++)
{
if(f[i][k])
{
for(int j=1;j<=l;j++)
{
if((i&(1<<(j-1)))==0)
{
f[(i|(1<<(j-1)))][(k*10+a[j])%mod]+=f[i][k];
}
}
}
}
}
}
int main()
{
scanf("%d",&tot);
while(tot--)
{
scanf("%s",s);
l=strlen(s);
memset(cnt,0,sizeof(cnt));
for(int i=0;i<l;i++)
{
a[i+1]=s[i]-'0';
cnt[a[i+1]]++;
}
scanf("%d",&mod);
memset(f,0,sizeof(f));
f[0][0]=1;
dfs();
int ans=f[(1<<l)-1][0];
for(int i=0;i<=9;i++)
{
if(cnt[i])ans/=A[cnt[i]];
}
printf("%d\n",ans);
}
}

版权声明:本文博客原创文章。博客,未经同意,不得转载。

BZOJ 1072 [SCOI2007]安排perm 如压力DP的更多相关文章

  1. BZOJ 1072: [SCOI2007]排列perm 状态压缩DP

    1072: [SCOI2007]排列perm Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为 ...

  2. BZOJ 1072 [SCOI2007]排列perm ——状压DP

    [题目分析] 没什么好说的,水题. 代码比较丑,结果需要开long long 时间爆炸 [代码] #include <cstdio> #include <cstring> #i ...

  3. bzoj 1072: [SCOI2007]排列perm 状压dp

    code: #include <bits/stdc++.h> #define N 1005 using namespace std; void setIO(string s) { stri ...

  4. BZOJ 1072 [SCOI2007]排列perm

    1072: [SCOI2007]排列perm Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1268  Solved: 782[Submit][Sta ...

  5. [BZOJ 1072] [SCOI2007] 排列perm 【状压DP】

    题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <io ...

  6. BZOJ 1072: [SCOI2007]排列perm [DP 状压 排列组合]

    题意:给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0) 100%的数据满足:s的长度不超过10, 1<=d<=1000, 1<=T<=15 看到整 ...

  7. bzoj 1072: [SCOI2007]排列perm【状压dp】

    先写了个next_permutation结果T了,于是开始写状压 设f[s][i]为选取状态为s,选的数模d为i的方案数,去重的话直接除以每个数字的出现次数的阶乘即可 #include<iost ...

  8. 【以前的空间】bzoj 1072 [SCOI2007]排列perm

    又颓废了一个下午,最近撸mc撸到丧失意识了,玩的有点恶心,于是找水题做,瞧不起颓废的自己啊. another水题. 这题题意很明显啦,就是找数字排列后组成的数去mod d=0后有多少种. 普通的搜索的 ...

  9. [BZOJ1072][SCOI2007]排列perm 状压dp

    1072: [SCOI2007]排列perm Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2488  Solved: 1546[Submit][St ...

随机推荐

  1. HDU 3756 Dome of Circus

    不会做,参见别人的程序: /* 底面为xy平面和轴为z轴的圆锥,给定一些点,使得圆锥覆盖所有点并且体积最小 点都可以投射到xz平面,问题转换为确定一条直线(交x,z与正半轴)使得与x的截距r 和与z轴 ...

  2. http协议与http代理

    TCP/IP协议族 TCP/IP(Transmission Control Protocol/InternetProtocol.传输控制协议/网际协议)是用于计算机通信的一个协议族. TCP/IP协议 ...

  3. D3DXMatrixMultiply 函数

    D3DXMatrixMultiply 函数 两个矩阵相乘. 定义:D3DXMATRIX *WINAPI D3DXMatrixMultiply(           D3DXMATRIX *pOut,  ...

  4. PHP移动互联网开发(1)——环境搭建及配置

    原文地址:http://www.php100.com/html/php/rumen/2014/0326/6702.html 一.PHP5.4环境搭配基本流程 Apache:Web服务提供者.官网:ww ...

  5. 浅谈CSS布局

    在No.4中谈及了下盒子模型,引出布局模型 1.布局模型有三类: 1)流动模型  flow(默认) 2)浮动模型  float 3)层模型  layer 2.文档流 :指的是文本沿着从左到右的方向展开 ...

  6. Informatica 9.5.1 安装配置

    Informatica  结构 1个或多个资源库(Respository) PowerCenter数据整合引擎是基于元数据驱动的,提供了基于数据驱动的元数据知识库(Repository),该元数据知识 ...

  7. 如何解决JavaWeb乱码问题

    作为一个合格的web开发人员应该是什么问题都遇到过的,尤其是乱码问题.大家也许都体会到了,我们中国人学编程,很大的一个不便就是程序的编码问题,无论学习什么技术,我们都需要探讨他的编码问题. 今天来讲一 ...

  8. AHK(1)之运行程序或打开文档

    小鸟学AHK(1)之运行程序或打开文档   AHK就是AutoHotKey,是一款免费的.Windows平台下开放源代码的热键脚本语言. 亲爱的朋友,叫我怎么向你推荐它呢! COOL,对,就是酷,那么 ...

  9. 在非MFC程序中使用调试宏 ASSERT(),VERIFY()和 TRACE()

    游戏制作已经开始采用C++了,却鲜有人选择使用MFC.但笔者觉得的 ASSERT(),VERIFY()和 TRACE()这几个宏很好用.所以就想自己写一个版本来适应Windows平台下不同的工程类型. ...

  10. 使用FreeType实现矢量字体的粗体、斜体、描边、阴影效果

    前言: Freetype是一个跨平台.开源的字体渲染器,网上很多文章介绍,本人就不啰嗦了.本文重点在于实现文章标题所属的各种效果,不是Freetype的基本使用方法介绍文档,所以对于Freetype不 ...