NOI2012 Day1
NOI2012 Day1
随机数生成器
题目描述:给出数列\(X_{n+1}=(aX_n+c)mod m\),求\(X_n mod g\)
solution:
矩阵乘法,但数有可能在运算时爆\(long long\),可以将一个数拆成两个\(long long\)存储,也可以用大数乘法\((b*c)mod m\):
LL get_mod(LL b, LL c)
{
LL ans=0;
while (b)
{
if (b & 1) ans=(ans+c)%m;
c=c*2%m;
b>>=1;
}
return ans;
}
时间复杂度:\(O(n)\)或\(O(nlogn)\)
骑行川藏
题目描述:给出\(n\)段路,每段路有三个参数\(s_i, k_i, v_i'\),分别表示这段路的长度,风阻系数以及风速,若某段路用匀速\(v\)通过,则受到的风阻的大小为\(F=k_i(v-v_i')^2\),消耗能量为\(E=k_i(v-v_i')^2s_i\),保证\(\sum_{i=1}^n E \leq E_U\)的前提下,求最短时间。
solution:
虽然在同一段路上的速度可以随时变化,但从微积分的角度分析,这是没必要的,他可以对应一个匀速的方案,所以每一段路应该各自匀速。设第\(i\)段路的速度为\(v_i\),为题转化为:
\]
运用贪心思想,不等式取等是最好的。
\]
把\(v_i\)看成\(n\)个变量,则约束条件为\(g\),目标函数为\(f\)
\]
\]
\]
\]
二分\(2k_iv_i^2(v_i-v_i')\),因为\(v_i>0\),所以该函数递增,二分可求出\(v_i\),判断是否满足约束条件,若满足,则求到最优解。
时间复杂度:\(?\)(难以计算, 精度要求高)
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <cstring>
#include <cstdlib>
#include <deque>
#include <queue>
#include <vector>
#include <map>
#include <complex>
using namespace std;
const int maxn=int(1e4)+100;
const double eps=1e-10;
int n;
double E, lambda;
double s[maxn], k[maxn], vf[maxn], v[maxn];
double ans;
void init()
{
scanf("%d%lf", &n, &E);
for (int i=1; i<=n; ++i)
scanf("%lf%lf%lf", &s[i], &k[i], &vf[i]);
}
void calc_v()
{
for (int i=1; i<=n; ++i)
{
double L=0, R=1e4;
while (L<R)
{
double mid=(L+R)/2;
double tmp=2*k[i]*mid*mid*(mid-vf[i]);
if (fabs(tmp-lambda)<eps)
{
v[i]=mid;
break;
}
if (tmp<lambda) L=mid; else R=mid;
}
}
}
bool check()
{
double tmp=0;
for (int i=1; i<=n; ++i)
tmp+=k[i]*(v[i]-vf[i])*(v[i]-vf[i])*s[i];
return tmp<=E;
}
double calc_ans()
{
double tmp=0;
for (int i=1; i<=n; ++i)
tmp+=s[i]/v[i];
return tmp;
}
void solve()
{
double L=0, R=1e5;
while (L+eps<R)
{
lambda=(L+R)/2;
calc_v();
if (check()) L=lambda; else R=lambda;
}
lambda=L;
calc_v();
ans=calc_ans();
}
int main()
{
freopen("bicycling.in", "r", stdin);
freopen("bicycling.out", "w", stdout);
init();
solve();
printf("%lf", ans);
return 0;
}
魔幻棋盘
题目描述:给出一个矩阵与其中的一个格\(P(x, y)\),支持两种操作:1、询问子矩阵的最大公约数,子矩阵包含\(P\). 2、让子矩阵加上一个整数。
solution:
恶心的处理题。
对于任意的两个数,它们的最大公约数等于它们的差与其中一个数求最大公约数。而且询问一定包含\(P\),所以可以采用作差的方法。如图:
因为询问一定包含\(P\),所以可以向内(\(P\)),作差,使得每个数与内相关,图中为箭头尾减头,只是相邻格子作差,先做图一,处理好图一后,用结果作差,即图二所示,也只是相邻格子作差。所以图一和图二作差时都要按箭头方向枚举。
将作差后的最后结果用二维线段树优化,询问时直接在二维线段树询问最大公约数,然后再跟\(P\)求一下就可以了。
如果没有修改,这题就算是做完了,但现在有修改,作差法就展现出它的优势了。因为不可能对整段数的最大公约数进行修改,作差法给予了单点修改的可能。
首先对于一个修改,有四个位置是一定要改的。
图中表示的是如果整个矩形都在一个象限,那么要修改哪些点,如果跨象限了,那么就要判断四个角的点在哪个象限。矩形覆盖了\(P\)的行或列的,也要对相应位置进行修改。
这里的处理比较恶心,自行脑补。
NOI2012 Day1的更多相关文章
- 高等数学(拉格朗日乘子法):NOI 2012 骑行川藏
[NOI2012] 骑行川藏 输入文件:bicycling.in 输出文件:bicycling.out 评测插件 时间限制:1 s 内存限制:128 MB NOI2012 Day1 Des ...
- BZOJ 2879: [Noi2012]美食节
2879: [Noi2012]美食节 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1834 Solved: 969[Submit][Status] ...
- NOIp2016 Day1&Day2 解题报告
Day1 T1 toy 本题考查你会不会编程. //toy //by Cydiater //2016.11.19 #include <iostream> #include <cstd ...
- day1
day1.py ][][: ][: ): : ]['lock'] = 0 json.dump(userlist_message, open(userlist, 'w')) break #输错次数到3次 ...
- day1作业--登录入口
作业概述: 编写一个登录入口,实现如下功能: (1)输入用户名和密码 (2)认证成功后显示欢迎信息 (3)输错三次后锁定 流程图: readme: 1.程序配置文件: 黑名单文件blacklist.t ...
- luogu1003铺地毯[noip2011 提高组 Day1 T1]
题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺序平行于 ...
- Python学习路程day1
变量起名: 变量名如果太长,推荐使用下划线来分开,让人看得清晰明白.例:nums_of_alex_girl=19 .或者是驼峰写法,即首字母大写.例:NumOfAlexGf=18 注意:不合法的变量起 ...
- 团队项目——站立会议 DAY1
团队项目--站立会议 DAY1 团队成员介绍(5人):张靖颜.何玥.钟灵毓秀.赵莹.王梓萱 今日(2016/5/6)为站立会议的第一天,一起对团队项目进行讨论,并对每个人的 ...
- Day1 login
使用流程: 1.程序启动后,显示欢迎信息,提示用户输入用户名: 2.判断用户是否存在,不存在则提示重新输入,或者关闭程序:客户存在则提示客户输入密码: 3.判断密码是否正确,如果不正确则提示用户重新输 ...
随机推荐
- Android AutoCompleteTextView和MultiAutoCompleteTextView使用
Android AutoCompleteTextView和MultiAutoCompleteTextView的功能类似于百度或者Google在搜索栏输入信息的时候,弹出的与输入信息接近的提示信息: 它 ...
- UVA514 Rails
铁轨 PopPush城市有一座著名的火车站.这个国家到处都是丘陵.而这个火车站是建于上一个世纪.不幸的是,那时的资金有限.所以只能建立起一条路面铁轨.而且,这导致这个火车站在同一个时刻只能一个轨道投 ...
- Display number of replies in disscussion board
how to display number of replies in disscussion board I have a require about display the replies' nu ...
- mysql语句添加索引
1.PRIMARY KEY(主键索引) mysql>ALTER TABLE `table_name` ADD PRIMARY KEY ( `column` ) 2. ...
- c语言 (linux下)
生成二进制 : gcc -o hello hello.c 生成汇编:gcc -o hello.s -S hello.c 生成预编译文件:gcc -o hello.i -E hello.c int ma ...
- iphone开发之适配iphone5
iphone5出来了,从不用适配的我们也要像android一样适配不同分辨率的屏幕了. 公司产品新版本需要适配iphone5,经过一番折腾算是搞定了.下面分享给大家: iphone5的屏幕分辨 ...
- ASP.NET 实现PDF文件下载
本文介绍了一种在ASP.NET中下载文件的方法. 方法一:可能是最简单的.最短的方式: Response.ContentType = "application/pdf"; Resp ...
- Arcgis API for Android之GPS定位
欢迎大家增加Arcgis API for Android的QQ交流群:337469080 先说说写这篇文章的原因吧,在群内讨论的过程中,有人提到了定位的问题,刚好,自己曾经在做相关工作的时候做过相关的 ...
- Makefile学习(一)变量
鉴于之前有一些了解,还有自己的学习习惯,我一上来就看Makefile的变量这一章.主要脉络是根据GNU make中文手册. 第六章:Makefile中的变量 6使用变量 定义:变量是一个名字,代表一个 ...
- HDU 2074 叠筐
叠筐 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission ...