原文网址:https://techfantastic.wordpress.com/2013/11/15/beaglebone-black-device-tree-overlay/

经过一晚上的Google,终于大致明白device tree是怎么用的了,这里简单梳理一下思路。

一、简介
===============================================================
device tree是ARM linux 3.7开始使用的系统控制硬件资源的方式,这里说的硬件资源既包括片上的诸如GPIO、PWM、I2C、ADC等资源,也包括外部拓展的如FLASH、LCD等。ARM使用device tree目前还是很新的东西(2012年低诞生的),自带3.8版本Linux系统的Beaglebone Black是第一批使用device tree的ARM设备之一。难怪目前关于它的中文资料还很少。之前的linux如果要配置硬件,需要重新编译内核,但用device tree就不必重新编译内核,甚至不必重启系统就能实现。如此方便的工具让我们来看一看庐山面目!

从单片机、STM32过渡到Cortex-A8,之前直接操作寄存器来控制硬件的思路已经不好使了,但是device tree提供了一种很类似直接操作寄存器,但是比它更有条理,更容易理解的方式。首先需要编写一个.dts文件(device tree source),在文件中说明我要设置的硬件和它的各种属性,然后使用dtc命令编译这个.dts文件生成对应的二进制文件.dtb(device tree blob),系统启动时就会加载这个device tree并配置各种硬件资源。实际上Beaglebone Black自带系统中/boot/目录下已经包含了一些编译好的.dtb文件,从文件名来看似乎每个.dtb文件都能配置一款beagleboard.org的开发板,其中有一个叫做am335x-boneblack.dtb的文件,没猜错的话应当负责了Beaglebone black的缺省硬件配置。但因为已经编译成了二进制文件,所以我们无法读取其内容。

那么我们如果想要自己修改某些功能改怎么办呢?我们肯定不能重新编译一个am335x-boneblack.dtb代替原来的文件,那样会疯掉的。不过我们可以使用device tree overlay来动态重定义某些功能。device tree overlay与device tree类似,同样是编写一个.dts文件,编译成.dtbo文件(末尾的o应该代表overlay)。不同的是我们不把它放到/boot/目录中去,它也不必在启动时加载,而可以在需要时随时进行动态加载。另外device tree overlay的.dts文件跟device tree的.dts文件格式还是有一点区别的,下面要介绍的是device tree overlay的.dts。接下来我们上机操作一下。

二、编写.dts文件
===============================================================
用ssh连接好Beaglebone black以后,我们先来找找Angstrom系统自带的.dts文件,看看它们长什么样子。用下面的命令搜索一下dts结尾的文件

# find / -name *dts

会得到下面这个列表(部分省略)

1
2
3
4
5
6
7
8
9
10
11
/lib/firmware/cape-bone-dvi-00A0.dts
/lib/firmware/bone_pwm_P8_45-00A0.dts
/lib/firmware/BB-SPI1A1-00A0.dts
/lib/firmware/BB-ADC-00A0.dts
/lib/firmware/BB-I2C1A1-00A0.dts
/lib/firmware/BB-BONE-SERL-01-00A1.dts
/lib/firmware/cape-bone-dvi-00A2.dts
/lib/firmware/bone_pwm_P8_13-00A0.dts
/lib/firmware/cape-bone-hexy-00A0.dts
/lib/firmware/BB-BONE-LCD7-01-00A2.dts
...

我们发现它们都在同一个目录内,/lib/firmware/,事实上系统自带的dts文件确实全部都在这个目录中,从文件名上我们会发现这里几乎包含了所有Beaglebone硬件资源的overlay,也包含了一些官方硬件外设(如lcd屏等,它们管自己的外设叫做cape)的overlay,因此以后有需要就可以直接到这里找了。下面随便打开其中一个看看(BB-UART1-00A0.dts)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/*
 * Copyright (C) 2013 CircuitCo
 *
 * Virtual cape for UART1 on connector pins P9.24 P9.26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
/dts-v1/;
/plugin/;
 
/ {
    compatible = "ti,beaglebone", "ti,beaglebone-black";
 
        /* identification */
        part-number = "BB-UART1";
        version = "00A0";
 
        /* state the resources this cape uses */
        exclusive-use =
                /* the pin header uses */
                "P9.24",        /* uart1_txd */
                "P9.26",        /* uart1_rxd */
                /* the hardware ip uses */
                "uart1";
 
        fragment@0 {
                target = <&am33xx_pinmux>;
                __overlay__ {
                        bb_uart1_pins: pinmux_bb_uart1_pins {
                                pinctrl-single,pins = <
                                        0x184 0x20 /* P9.24 uart1_txd.uart1_txd MODE0 OUTPUT (TX) */
                                        0x180 0x20 /* P9.26 uart1_rxd.uart1_rxd MODE0 INPUT (RX) */
                                >;
                        };
                };
        };
 
        fragment@1 {
                target = <&uart2>;    /* really uart1 */
                __overlay__ {
                        status = "okay";
                        pinctrl-names = "default";
                        pinctrl-0 = <&bb_uart1_pins>;
                };
        };
};

它的语法跟c语言有点类似。我先从中抽掉不重要的内容,把它写成下面的伪代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/ {
        fragment@0 {
                target = <&am33xx_pinmux>;
                __overlay__ {
                        bb_uart1_pins: pinmux_bb_uart1_pins {
                                pinctrl-single,pins = <
                                        0x184 0x20 /* P9.24 uart1_txd.uart1_txd MODE0 OUTPUT (TX) */
                                        0x180 0x20 /* P9.26 uart1_rxd.uart1_rxd MODE0 INPUT (RX) */
                                >;
                        };
                };
        };
 
        fragment@1 {
                target = <&uart2>;
                __overlay__ {
                        status = "okay";
                        pinctrl-names = "default";
                        pinctrl-0 = <&bb_uart1_pins>;
                };
        };
};

从这里就能看出.dts文件的结构了——是一个树形结构。第一行的/代表根,下面的fragment@0fragment@1是其两个分支节点。每个fragment节点下面又各有一个__overlay__节点(这些节点的名字都是固定的)。每个fragment节点下面相邻的target说明这个节点要修改的对象,在__overlay__节点下面的内容阐明了要修改的属性。

具体来说,am33xx_pinmux可以定义芯片功能复用引脚的具体功能,它使用了pinctrl-single,pins这个驱动,其中第一项0x184代表要修改的引脚,第二项0x20代表要修改成哪个功能(pinctrl-single的具体用法见这里)。这里把P9.24和P9.26两个引脚定义成了uart1的TX和RX。uart2这个target则使能了uart1(这个uart2实际上对应的是硬件的uart1)。

如果把树形结构什么的都忽略掉,就会发现其实它实现了我之前用寄存器干的事:定义引脚功能,然后使能串口。

那么当我想自己写device tree的时候,一上来就会遇到一个问题:我怎么知道我想控制的对象target名字是什么?我怎么知道它有哪些属性?取值范围是什么?答案在linux官网上。(不过有一些在这里似乎找不到,回头解决)

了解了dts文件的基本框架,我们再把之前丢掉的细节拿回来说明一下。(这些细节有些是非常重要的,实际使用中一定不要随意丢掉!)
首先这两行说明了dts的版本号,声明了这个文件的内容是一个plugin

1
2
/dts-v1/;
/plugin/;

根节点下面的一行说明了它的适用平台,这个是必须要写的。

1
compatible = "ti,beaglebone", "ti,beaglebone-black";

接下来的部分说明了这个device tree overlay的名字和版本号(版本号似乎只能是00A0)

1
2
3
/* identification */
part-number = "BB-UART1";
version = "00A0";

再下面的部分说明了要使用的引脚和硬件设备

1
2
3
4
5
6
7
/* state the resources this cape uses */
        exclusive-use =
                /* the pin header uses */
                "P9.24",        /* uart1_txd */
                "P9.26",        /* uart1_rxd */
                /* the hardware ip uses */
                "uart1";

接下来就是device tree overlay的具体内容,前面已经简单解释过了,但似乎还是看不太明白,也写不出来。实际上我们并不需要自己从头开始写,因为在系统/lib/firmware/目录中已经自带了很多.dts文件,我们只需要在它们的基础上进行修改就行了。需要提示一点,在.dts文件里我们经常会看到target = &ocp,这里的ocp是on chip peripherals的缩写,我猜想可能是用来描述连接到芯片的其他外设的(如按键、lcd等)。后面的日志里我再记录一下详细的操作细节。这篇先简单介绍这么多。

三、编译.dts文件
===============================================================
写好.dts文件以后需要用dtc编译器编译一下,生成.dtbo文件才能使用。
假设我们写好了一个名为ADAFRUIT-SPI0-00A0.dts的文件,编译指令如下

# dtc -O dtb -o ADAFRUIT-SPI0-00A0.dtbo -b 0 -@ ADAFRUIT-SPI0-00A0.dts

然后就会生成ADAFRUIT-SPI0-00A0.dtbo文件。下面解释一下各个参数
-O dtb 声明输出格式为dtb文件
-o 输出文件名
-b 设置启动CPU
-@ (我不太清楚这项是干嘛的,似乎是overlay专有的一项)
注意文件的命名,一定是“程序名-版本号.dtbo(.dts)”的形式。
编译完成以后,一定要把.dtbo文件放到/lib/firmware/目录下才能使用

# cp ADAFRUIT-SPI0-00A0.dtbo /lib/firmware

四、overlay的使用 (Exporting and Unexporting an Overlay,加载和卸载)
===============================================================
所有已经加载的overlay列表都在/sys/devices/bone_capemgr.*/slots这个文件中。(bone_capemgr.*中的*号实际是一个数字,但是每次系统启动时这个数字可能会变化,所以我们用通配符*代替。)我们打开这个文件看一看
# cat /sys/devices/bone_capemgr.*/slots

1
2
3
4
5
6
0: 54:PF---
1: 55:PF---
2: 56:PF---
3: 57:PF---
4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI

我们看到系统已经自动加载了两个overlay,eMMC和HDMI。下面我们把之前讲解的BB-UART1-00A0.dtbo加载一下,方法是

# echo BB-UART1 > /sys/devices/bone_capemgr.*/slots

然后我们再打开slots文件看看有什么变化

1
2
3
4
5
6
7
0: 54:PF---
1: 55:PF---
2: 56:PF---
3: 57:PF---
4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
6: ff:P-O-L Override Board Name,00A0,Override Manuf,BB-UART1

会发现多了一项,说明加载成功了,下面就可以使用外设了。

外设使用完毕以后,如何卸载呢?一种方法是重启系统,另一种是

# echo -6 > /sys/devices/bone_capemgr.*/slots

但是在最近的Angstrom系统中,用这种方法会导致kernel panic,然后ssh会断开,所以现在还是用重启系统的方法吧。相信今后这个问题应该很快会解决的。

注:adafruit的这篇Introduction to the BeagleBone Black Device Tree令我受益匪浅,在此表示一下感谢。

【转】用Device tree overlay掌控Beaglebone Black的硬件资源的更多相关文章

  1. 聊聊Beaglebone Black的cape和device tree overlay和dtc命令【转】

    本文转载自:https://blog.csdn.net/wyt2013/article/details/16846171 本文是我早期写的,语言略混乱.请直接看我最新整理的,适用于初学者的文章< ...

  2. 系统对 Device Tree Overlays 的支持方式

    问题来源: 野火 iMX 6ULL 开发板资料. https://tutorial.linux.doc.embedfire.com/zh_CN/latest/linux_basis/fire-conf ...

  3. Device Tree(一):背景介绍

    一.前言 作为一个多年耕耘在linux 2.6.23内核的开发者,各个不同项目中各种不同周边外设驱动的开发以及各种琐碎的.扯皮的俗务占据了大部分的时间.当有机会下载3.14的内核并准备学习的时候,突然 ...

  4. Device Tree(一):背景介绍【转】

    本文转载自:http://www.wowotech.net/device_model/why-dt.html 一.前言 作为一个多年耕耘在linux 2.6.23内核的开发者,各个不同项目中各种不同周 ...

  5. Device Tree(一):背景介绍 转

    作者:linuxer 发布于:2014-5-22 16:46 分类:统一设备模型 一.前言 作为一个多年耕耘在linux 2.6.23内核的开发者,各个不同项目中各种不同周边外设驱动的开发以及各种琐碎 ...

  6. 【转】使用BBB的device tree和cape(重新整理版)

    只要你想用BBB做哪怕一丁点涉及到硬件的东西,你就不可避免地要用到cape和device tree的知识.所以尽管它们看起来很陌生而且有点复杂,但还是得学.其实用起来不难的.下面我只讲使用时必须会的内 ...

  7. 學習 DT device tree 以 ST 的開發板 STM32F429i-disc1 為例

    目標 因為對 device tree 不是很熟悉, 所以就將 device tree, 設為學習目標. 啟動 注意, 這篇隨筆的解說都放在最下面,會標 Explanation_XX,只要搜尋 Expl ...

  8. Device Tree(二):基本概念

    转自:http://www.wowotech.net/linux_kenrel/dt_basic_concept.html 一.前言 一些背景知识(例如:为何要引入Device Tree,这个机制是用 ...

  9. Linux and the Device Tree

    来之\kernel\Documentation\devicetree\usage-model.txt Linux and the Device Tree ----------------------- ...

随机推荐

  1. 怎样检查手机是否root成功

    怎样检查手机是否root成功 浏览:154361 | 更新:2011-01-20 13:10 | 标签:root 总有人以为,root后就可以删除自带程序了,这个想法也对也不对,想删除自带的软件,确实 ...

  2. Java Web----Java Web的数据库操作(一)

    Java Web的数据库操作 一.JDBC技术 1.JDBC简介 JDBC是Java程序与数据库系统通信的标准API,它定义在JDK的API中,通过JDBC技术,Java程序可以非常方便地与各种数据库 ...

  3. lucene3.6.0 经典案例 入门教程

    第一步:下载并导入lucene的核心包(注意版本问题):  例如Lucene3.6版本:将lucene-core-3.6.0.jar拷贝到项目的libs 文件夹里.  例如Lucene4.6版本:将l ...

  4. python3-day5(模块)

    1.获取路径import os,sys #获取全部路径 print(os.path.abspath(__file__)) #获取目录 print(os.path.dirname(os.path.abs ...

  5. css如何使背景图片水平居中

    CSS中定位背景图片的属性是:background-position,用法background-position 属性设置背景图像的起始位置. 你要水平居中可以: div{background-pos ...

  6. 具体解说Android的图片下载框架UniversialImageLoader之磁盘缓存的扩展(二)

    相对于第一篇来讲,这里讲的是磁盘缓存的延续.在这里我们主要是关注四个类.各自是DiskLruCache.LruDiskCache.StrictLineReader以及工具类Util. 接下来逐一的对它 ...

  7. 安装oracle11g未找到文件WFMLRSVCApp.ear文件

    win7_64位系统,安装oracle11gR2时,报错提示: 未找到文件...WFMLRSVCApp.ear文件 解决方法如下: 将下载的两个压缩包解压至同一目录(合并)再安装即可解决此类问题.

  8. [转载]aptitude与apt-get的区别和联系

    转自 http://www.cnblogs.com/yuxc/archive/2012/08/02/2620003.html 命令 下面将要介绍的所有命令都需要sudo!使用时请将“packagena ...

  9. Android ----------获取各种路径(更新中。。。。。。)

    ##在手机中的路径 *获取应用的路径,形式:/data/data/包名 String appDataDir = getApplicationInfo().dataDir; *获取手机数据存储路径,即/ ...

  10. Tomcat6+nginx集群,达到负载均衡和session复制

    nginx+tomcat做web项目集群,达到负载均衡.故障转移.session复制功能. 1.nginx配置文件见上一篇“nginx配置文件(反向代理+集群+动静分离)” 2.tomcat集群,修改 ...